Geometry-dependence of defects in PBLT serpentines

Author(s):  
Peter Fejes ◽  
N. David Theodore ◽  
Han-Bin Liang

Poly-buffered LOCOS + trench-isolation is a technique being explored for device-isolation on semiconductor substrates. The method creates self-aligned shallow field-oxide elements with minimal encroachment into active regions. In an earlier study/dislocations were observed in PBLT structures, associated with a combination of high-dose [∼1E15 cm−2] phosphorus implants and PBLT isolation. The present study investigates the effect of implant- and isolation-geometries on the formation of extended-defects in PBLT structures. The effect of fabrication-related stresses in the structures is of interest because extended-defects, once formed, can electrically degrade devices.PBLT structures were fabricated using varied implant- and isolation- geometries. Selected regions of the structures were exposed to 1E15 cm−2 phosphorus implants. Transmission electron microscopy was then used to characterize these regions. Some of the structures investigated were (i) trench with no adjacent implant, (ii) trench with an adjacent trench, but no implant, (iii) trench with a 1E15 cm−2 phosphorus implant placed ∼4 μm from the trench, (iv) trench with a 1E15 cm−2 phosphorus implant placed ∼2 μm from the trench, (v) doubly-kinked trench with a 1E15cm−2 phosphorus implant placed between the kinks.

1998 ◽  
Vol 536 ◽  
Author(s):  
V. P. Popov ◽  
A. K. Gutakovsky ◽  
I. V. Antonova ◽  
K. S. Zhuravlev ◽  
E. V. Spesivtsev ◽  
...  

AbstractA study of Si:H layers formed by high dose hydrogen implantation (up to 3x107cm-2) using pulsed beams with mean currents up 40 mA/cm2 was carried out in the present work. The Rutherford backscattering spectrometry (RBS), channeling of He ions, and transmission electron microscopy (TEM) were used to study the implanted silicon, and to identify the structural defects (a-Si islands and nanocrystallites). Implantation regimes used in this work lead to creation of the layers, which contain hydrogen concentrations higher than 15 at.% as well as the high defect concentrations. As a result, the nano- and microcavities that are created in the silicon fill with hydrogen. Annealing of this silicon removes the radiation defects and leads to a nanocrystalline structure of implanted layer. A strong energy dependence of dechanneling, connected with formation of quasi nanocrystallites, which have mutual small angle disorientation (<1.50), was found after moderate annealing in the range 200-500°C. The nanocrystalline regions are in the range of 2-4 nm were estimated on the basis of the suggested dechanneling model and transmission electron microscopy (TEM) measurements. Correlation between spectroscopic ellipsometry, visible photoluminescence, and sizes of nanocrystallites in hydrogenated nc-Si:H is observed.


2019 ◽  
Vol 963 ◽  
pp. 399-402 ◽  
Author(s):  
Cristiano Calabretta ◽  
Massimo Zimbone ◽  
Eric G. Barbagiovanni ◽  
Simona Boninelli ◽  
Nicolò Piluso ◽  
...  

In this work, we have studied the crystal defectiveness and doping activation subsequent to ion implantation and post-annealing by using various techniques including photoluminescence (PL), Raman spectroscopy and transmission electron microscopy (TEM). The aim of this work was to test the effectiveness of double step annealing to reduce the density of point defects generated during the annealing of a P implanted 4H-SiC epitaxial layer. The outcome of this work evidences that neither the first 1 hour isochronal annealing at 1650 - 1700 - 1750 °C, nor the second one at 1500 °C for times between 4 hour and 14 hour were able to recover a satisfactory crystallinity of the sample and achieve dopant activations exceeding 1%.


2018 ◽  
Vol 24 (6) ◽  
pp. 623-633 ◽  
Author(s):  
Xin Li ◽  
Ondrej Dyck ◽  
Sergei V. Kalinin ◽  
Stephen Jesse

AbstractScanning transmission electron microscopy (STEM) has become the main stay for materials characterization on atomic level, with applications ranging from visualization of localized and extended defects to mapping order parameter fields. In recent years, attention has focused on the potential of STEM to explore beam induced chemical processes and especially manipulating atomic motion, enabling atom-by-atom fabrication. These applications, as well as traditional imaging of beam sensitive materials, necessitate increasing the dynamic range of STEM in imaging and manipulation modes, and increasing the absolute scanning speed which can be achieved by combining sparse sensing methods with nonrectangular scanning trajectories. Here we have developed a general method for real-time reconstruction of sparsely sampled images from high-speed, noninvasive and diverse scanning pathways, including spiral scan and Lissajous scan. This approach is demonstrated on both the synthetic data and experimental STEM data on the beam sensitive material graphene. This work opens the door for comprehensive investigation and optimal design of dose efficient scanning strategies and real-time adaptive inference and control of e-beam induced atomic fabrication.


1994 ◽  
Vol 354 ◽  
Author(s):  
Z. Xia ◽  
E. Ristolainen ◽  
R. Elliman ◽  
H. Ronkainen ◽  
S. Eränen ◽  
...  

AbstractRecently observations that high-dose Ge implantations into Si substrates caused the n-type carrier concentration to increase were attributed to residual structural defects after activation annealing [7,12]. However, co-implantation of an n-type impurity is another possibility. The origin of this excess donor concentration has been studied in this work. The possibilities of residual defects versus implantation of impurities have been investigated using two different implanters and materials analysis. Comparison of data from different implanters showed that the concentration of excess donors was sensitive to the implanter configuration. Furthermore, transmission electron microscopy (TEM), Rutherford backscattering channeling (RBS-C), and spreading resistance profiling (SRP) data showed that the excess donor effect was related to impurities rather than residual defects. Secondary-ion mass spectroscopy (SIMS) and SRP measurements confirmed that impurities such as 75As ions were present after implants. This impurity easily explains the excess donor concentration when 75Ge implants are performed into silicon wafers doped with phosphorous.


2010 ◽  
Vol 645-648 ◽  
pp. 713-716 ◽  
Author(s):  
Ming Hung Weng ◽  
Fabrizio Roccaforte ◽  
Filippo Giannazzo ◽  
Salvatore di Franco ◽  
Corrado Bongiorno ◽  
...  

This paper reports on the electrical activation and structural analysis of Al implanted 4H-SiC. The evolution of the implant damage during high temperature (1650 – 1700 °C) annealing results in the presence of extended defects and precipitates, whose density and depth distribution in the implanted sheet was accurately studied for two different ion fluences (1.31014 and 1.31015 cm-2) by transmission electron microscopy. Furthermore, the profiles of electrically active Al were determined by scanning capacitance microscopy. Only a limited electrical activation (10%) was measured for both fluences in the samples annealed without a capping layer. The use of a graphite capping layer to protect the surface during annealing showed a beneficial effect, yielding both a reduced surface roughness and an increased electrical activation (20% for the highest fluence and 30% for the lowest one) with respect to samples annealed without the capping layer.


1988 ◽  
Vol 3 (6) ◽  
pp. 1238-1246 ◽  
Author(s):  
J. K. N. Lindner ◽  
E. H. te Kaat

Six MeV high-dose Ni implantation into silicon has been applied to synthesize deep-buried metallic layers. These layers have been analyzed by optical reflectivity and spreading resistance depth profiling as well as transmission electron microscopy and cross-section transmission electron microscopy. Already in the as-implanted state, at target temperatures of 450 K and doses above 1017 Ni/cm2, epitaxial precipitates of NiSi2 are formed. They grow in type-A and type-B orientations. In addition to these polyhedral crystallites, thin NiSi2 platelets on {111} lattice planes exist. At a dose of 1.3 × 1018 Ni/cm2, a continuous but highly defective layer of epitaxial NiSi2 is formed by coalescence of mainly type-A precipitates at the maximum of the Ni profile. Investigations indicate that damage gettering of nickel atoms as well as the atomic density increase during implantation influence the depth distribution of implanted metal atoms. Moreover, a suppression of silicon amorphization by nickel is evident.


2011 ◽  
Vol 178-179 ◽  
pp. 275-284 ◽  
Author(s):  
Michael Seibt ◽  
Philipp Saring ◽  
Philipp Hahne ◽  
Linda Stolze ◽  
M.A. Falkenberg ◽  
...  

This contribution summarizes recent efforts to apply transmission electron microscopy (TEM) techniques to recombination-active extended defects present in a low density. In order to locate individual defects, electron beam induced current (EBIC) is applied in situ in a focused ion beam (FIB) machine combined with a scanning electron microscope. Using this approach defect densities down to about 10cm-2 are accessible while a target accuracy of better than 50nm is achieved. First applications described here include metal impurity related defects in multicrystalline silicon, recombination and charge collection at NiSi2 platelets, internal gettering of copper by NiSi2 precipitates and site-determination of copper atoms in NiSi2.


Sign in / Sign up

Export Citation Format

Share Document