Microstructure of laser-irradiated, conducting Kapton polyimide

Author(s):  
D. L. Callahan ◽  
Z. Ball ◽  
H. M. Phillips ◽  
R. Sauerbrey

Ultraviolet laser-irradiation can be used to induce an insulator-to-conductor phase transition on the surface of Kapton polyimide. Such structures have potential applications as resistors or conductors for VLSI applications as well as general utility electrodes. Although the percolative nature of the phase transformation has been well-established, there has been little definitive work on the mechanism or extent of transformation. In particular, there has been considerable debate about whether or not the transition is primarily photothermal in nature, as we propose, or photochemical. In this study, cross-sectional optical microscopy and transmission electron microscopy are utilized to characterize the nature of microstructural changes associated with the laser-induced pyrolysis of polyimide.Laser-modified polyimide samples initially 12 μm thick were prepared in cross-section by standard ultramicrotomy. Resulting contraction in parallel to the film surface has led to distortions in apparent magnification. The scale bars shown are calibrated for the direction normal to the film surface only.

1998 ◽  
Vol 523 ◽  
Author(s):  
C. Amy Hunt ◽  
Yuhong Zhang ◽  
David Su

AbstractTransmission electron microscopy (TEM) is a useful tool in process evaluation and failure analysis for semiconductor industries. A common focus of semiconductor TEM analyses is metalization vias (plugs) and it is often desirable to cross-section through a particular one. If the cross-sectional plane deviates away from the center of the plug, then the thin adhesion layer around the plug will be blurred by surrounding materials such as the inter-layer dielectric and the plug material. The importance of these constraints, along with the difficulty of precision sample preparation, has risen sharply as feature sizes have fallen to 0.25 μm and below. The suitability of common sample preparation techniques for these samples is evaluated.


2003 ◽  
Vol 18 (1) ◽  
pp. 14-26 ◽  
Author(s):  
D. Eyidi ◽  
M. D. Croitoru ◽  
O. Eibl ◽  
R. Nemetschek ◽  
W. Prusseit

CeO2 films are technologically important as buffer layers for the integration of superconducting YBa2Cu3O7−δ films on {100}-biaxially textured Ni substrates, yielding a Ni–CeO2–YBa2Cu3O7−δ layer sequence. The Ni–CeO2 interface is a metal–oxide interface, and the misfit between substrate and film is about 9%. An epitaxial growth model was suggested for this system in the literature. The investigated films were deposited by a reactive thermal evaporation process at substrate temperatures of 650–670 °C with a thickness of 100 nm after deposition. The CeO2 films were characterized by plan-view and cross-section transmission electron microscopy, atomic force microscopy, and scanning electron microscopy. The CeO2 films had a strong {100} biaxial texture with a roughness of approximately 90 nm. No intermediate layer could be found by cross-section transmission electron microscopy at the Ni–CeO2 interface. The films had columnar grains with diameters of 20–50 nm, much smaller than the grain size of the Ni substrate, which was larger than 1 μm. Small-angle grain boundaries and small amounts of 〈111〉-oriented grains were evidenced in plan-view samples by diffraction patterns. The Moiré fringes technique was applied and was ideally suited to image the small rotations (≤3°) of the small CeO2 grains with respect to the Ni substrate. These small rotations of small grains showed that the growth was nonepitaxial, however, biaxially textured. In the CeO2 film samples, nanovoids 5–10 nm in size were observed and were mostly located close to the film surface. A model for the growth of CeO2 thin films on nickel substrates can be proposed on the basis of our results.


2002 ◽  
Vol 16 (01n02) ◽  
pp. 205-212
Author(s):  
ZHIBIN ZHANG ◽  
SHILI ZHANG ◽  
DEZHANG ZHU ◽  
HONGJIE XU ◽  
YI CHEN

The effect of Mo on the formation of C54 TiSi 2 on Si (100) substrates is studied using cross-section transmission electron microscopy. For a Ti/Mo bilayer on Si, the interfacial Mo film reacts with Ti and Si to form C40 (Mo,Ti)Si 2 at 550°C. Crystal grains of metastable C40 TiSi 2 and equilibrium C54 TiSi 2 are found in the region near the interfacial (Mo,Ti)Si 2 layer due to the template phenomenon. Increasing the temperature to 600°C leads to the growth of C54 TiSi 2 throughout the film. No C49 grains can be detected. The findings confirm that the usual sequence for the formation of C54 TiSi 2, i.e. the C49 TiSi 2 forms first followed by a phase transition to the C54 TiSi 2, is altered by the interposed Mo layer. For a Mo/Ti bilayer on Si , the surface Mo layer is found to be present sequentially in (Mo,Ti) 5 Si 3 at 550°C, C49 (Mo,Ti)Si 2 at 600°C and C54 (Mo,Ti)Si 2 at 650°C. The bulk Ti beneath forms the C54 TiSi 2 following the usual route through the C49-C54 phase transition. However, this transition is now enhanced, in comparison with the C54 TiSi 2 formation with pure Ti , by the C54 (Mo,Ti)Si 2 atop that plays the role as a template precisely as the interfacial C40 (Mo,Ti)Si 2.


1992 ◽  
Vol 275 ◽  
Author(s):  
K. Uehara ◽  
H. Sakai ◽  
H. Hayashi ◽  
Y. Shiohara ◽  
S. Tanaka

ABSTRACTHigh-resolution transmission electron microscopy (HREM) has been used to study the microstructures of Y-Ba-Cu-0 superconducting thin films in which the YBa2Cu4O8 phase was the main phase. From cross-sectional observations, the c-normal 123 phase predominated in the film near the substrate surface, while the c-normal 124 phase occupied the region near the film surface. Another remarkable microstructure was that a-normal 123 variants overcame the c-normal 123 region, but the c-normal 124 phase surpassed the a-normal 123 phase in the upper part of the film.


Author(s):  
L. D. Peachey ◽  
J. P. Heath ◽  
G. Lamprecht

Biological specimens of cells and tissues generally are considerably thicker than ideal for high resolution transmission electron microscopy. Actual image resolution achieved is limited by chromatic aberration in the image forming electron lenses combined with significant energy loss in the electron beam due to inelastic scattering in the specimen. Increased accelerating voltages (HVEM, IVEM) have been used to reduce the adverse effects of chromatic aberration by decreasing the electron scattering cross-section of the elements in the specimen and by increasing the incident electron energy.


Author(s):  
F. Shaapur

Non-uniform ion-thinning of heterogenous material structures has constituted a fundamental difficulty in preparation of specimens for transmission electron microscopy (TEM). A variety of corrective procedures have been developed and reported for reducing or eliminating the effect. Some of these techniques are applicable to any non-homogeneous material system and others only to unidirectionalfy heterogeneous samples. Recently, a procedure of the latter type has been developed which is mainly based on a new motion profile for the specimen rotation during ion-milling. This motion profile consists of reversing partial revolutions (RPR) within a fixed sector which is centered around a direction perpendicular to the specimen heterogeneity axis. The ion-milling results obtained through this technique, as studied on a number of thin film cross-sectional TEM (XTEM) specimens, have proved to be superior to those produced via other procedures.XTEM specimens from integrated circuit (IC) devices essentially form a complex unidirectional nonhomogeneous structure. The presence of a variety of mostly lateral features at different levels along the substrate surface (consisting of conductors, semiconductors, and insulators) generally cause non-uniform results if ion-thinned conventionally.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


2019 ◽  
Vol 1 (4) ◽  
pp. 1581-1588 ◽  
Author(s):  
S. I. Sadovnikov ◽  
E. Yu. Gerasimov

For the first time, the α-Ag2S (acanthite)–β-Ag2S (argentite) phase transition in a single silver sulfide nanoparticles has been observed in situ using a high-resolution transmission electron microscopy method in real time.


Sign in / Sign up

Export Citation Format

Share Document