The Z band in skeletal muscle in rigor exhibits the activated lattice form

Author(s):  
R. J. Edwards

The Z band of skeletal muscle is a tetragonal array of interdigitating thin filaments from adjacent sarcomeres held together by cross connecting filaments. Two visually unique forms of the Z band (small square, ss, and basketweave, bw) can be observed by TEM of cross sections. The ss form is found in relaxed muscle and the bw is found in maximally activated muscle. The average Z spacing in the bw form is 20% largerthan in the ss form. There is a correlation between active tension and the form of the Z band. This correlation suggests that cross bridge binding in the A band is directly related to the form of the Z band. In rigor, the cross bridges are completely bound; therefore, we predicted that the Z band would exhibit the bw form. To test this hypothesis we compared unstimulated muscle to glycerinated muscle in rigor.

1998 ◽  
Vol 274 (5) ◽  
pp. C1306-C1311 ◽  
Author(s):  
C. Y. Seow ◽  
L. Morishita ◽  
B. H. Bressler

Direct action of the cardiotonic bipyridine milrinone on the cross bridges of single fibers of skinned rabbit skeletal muscle was investigated. At 10°C and pH 7.0, milrinone reduced isometric tension in a logarithmically concentration-dependent manner, with a 55% reduction in force at 0.6 mM. Milrinone also reduced Ca2+ sensitivity of skinned fibers in terms of force production; the shift in the force-pCa curve indicated a change in the pCa value at 50% maximal force from 6.10 to 5.94. The unloaded velocity of shortening was reduced by 18% in the presence of 0.6 mM milrinone. Parts of the transient tension response to step change in length were altered by milrinone, so that the test and control transients could not be superimposed. The results indicate that milrinone interferes with the cross-bridge cycle and possibly detains cross bridges in low-force states. The results also suggest that the positive inotropic effect of milrinone on cardiac muscle is probably not due to the drug’s direct action on the muscle cross bridges. The specific and reversible action of the bipyridine on muscle cross bridges makes it a potentially useful tool for probing the chemomechanical cross-bridge cycle.


2019 ◽  
Vol 317 (6) ◽  
pp. C1304-C1312 ◽  
Author(s):  
Malin Persson ◽  
Maarten M. Steinz ◽  
Håkan Westerblad ◽  
Johanna T. Lanner ◽  
Dilson E. Rassier

Skeletal muscle weakness is associated with oxidative stress and oxidative posttranslational modifications on contractile proteins. There is indirect evidence that reactive oxygen/nitrogen species (ROS/RNS) affect skeletal muscle myofibrillar function, although the details of the acute effects of ROS/RNS on myosin-actin interactions are not known. In this study, we examined the effects of peroxynitrite (ONOO−) on the contractile properties of individual skeletal muscle myofibrils by monitoring myofibril-induced displacements of an atomic force cantilever upon activation and relaxation. The isometric force decreased by ~50% in myofibrils treated with the ONOO− donor (SIN-1) or directly with ONOO−, which was independent of the cross-bridge abundancy condition (i.e., rigor or relaxing condition) during SIN-1 or ONOO− treatment. The force decrease was attributed to an increase in the cross-bridge detachment rate ( gapp) in combination with a conservation of the force redevelopment rate (kTr) and hence, an increase in the population of cross-bridges transitioning from force-generating to non-force-generating cross-bridges during steady-state. Taken together, the results of this study provide important information on how ROS/RNS affect myofibrillar force production which may be of importance for conditions where increased oxidative stress is part of the pathophysiology.


2004 ◽  
Vol 287 (3) ◽  
pp. C594-C602 ◽  
Author(s):  
Christopher M. Rembold ◽  
Robert L. Wardle ◽  
Christopher J. Wingard ◽  
Timothy W. Batts ◽  
Elaine F. Etter ◽  
...  

Serine 19 phosphorylation of the myosin regulatory light chain (MRLC) appears to be the primary determinant of smooth muscle force development. The relationship between MRLC phosphorylation and force is nonlinear, showing that phosphorylation is not a simple switch regulating the number of cycling cross bridges. We reexamined the MRLC phosphorylation-force relationship in slow, tonic swine carotid media; fast, phasic rabbit urinary bladder detrusor; and very fast, tonic rat anococcygeus. We found a sigmoidal dependence of force on MRLC phosphorylation in all three tissues with a threshold for force development of ∼0.15 mol Pi/mol MRLC. This behavior suggests that force is regulated in a highly cooperative manner. We then determined whether a model that employs both the latch-bridge hypothesis and cooperative activation could reproduce the relationship between Ser19-MRLC phosphorylation and force without the need for a second regulatory system. We based this model on skeletal muscle in which attached cross bridges cooperatively activate thin filaments to facilitate cross-bridge attachment. We found that such a model describes both the steady-state and time-course relationship between Ser19-MRLC phosphorylation and force. The model required both cooperative activation and latch-bridge formation to predict force. The best fit of the model occurred when binding of a cross bridge cooperatively activated seven myosin binding sites on the thin filament. This result suggests cooperative mechanisms analogous to skeletal muscle that will require testing.


2020 ◽  
Vol 295 (39) ◽  
pp. 13664-13676 ◽  
Author(s):  
Stephanie Willing ◽  
Emma Dyer ◽  
Olaf Schneewind ◽  
Dominique Missiakas

Staphylococcal peptidoglycan is characterized by pentaglycine cross-bridges that are cross-linked between adjacent wall peptides by penicillin-binding proteins to confer robustness and flexibility. In Staphylococcus aureus, pentaglycine cross-bridges are synthesized by three proteins: FemX adds the first glycine, and the homodimers FemA and FemB sequentially add two Gly-Gly dipeptides. Occasionally, serine residues are also incorporated into the cross-bridges by enzymes that have heretofore not been identified. Here, we show that the FemA/FemB homologues FmhA and FmhC pair with FemA and FemB to incorporate Gly-Ser dipeptides into cross-bridges and to confer resistance to lysostaphin, a secreted bacteriocin that cleaves the pentaglycine cross-bridge. FmhA incorporates serine residues at positions 3 and 5 of the cross-bridge. In contrast, FmhC incorporates a single serine at position 5. Serine incorporation also lowers resistance toward oxacillin, an antibiotic that targets penicillin-binding proteins, in both methicillin-sensitive and methicillin-resistant strains of S. aureus. FmhC is encoded by a gene immediately adjacent to lytN, which specifies a hydrolase that cleaves the bond between the fifth glycine of cross-bridges and the alanine of the adjacent stem peptide. In this manner, LytN facilitates the separation of daughter cells. Cell wall damage induced upon lytN overexpression can be alleviated by overexpression of fmhC. Together, these observations suggest that FmhA and FmhC generate peptidoglycan cross-bridges with unique serine patterns that provide protection from endogenous murein hydrolases governing cell division and from bacteriocins produced by microbial competitors.


1999 ◽  
Vol 87 (5) ◽  
pp. 1861-1876 ◽  
Author(s):  
Maria V. Razumova ◽  
Anna E. Bukatina ◽  
Kenneth B. Campbell

A relatively simple method is presented for incorporating cross-bridge mechanisms into a muscle model. The method is based on representing force in a half sarcomere as the product of the stiffness of all parallel cross bridges and their average distortion. Differential equations for sarcomeric stiffness are derived from a three-state kinetic scheme for the cross-bridge cycle. Differential equations for average distortion are derived from a distortional balance that accounts for distortion entering and leaving due to cross-bridge cycling and for distortion imposed by shearing motion between thick and thin filaments. The distortion equations are unique and enable sarcomere mechanodynamics to be described by only a few ordinary differential equations. Model predictions of small-amplitude step and sinusoidal responses agreed well with previously described experimental results and allowed unique interpretations to be made of various response components. Similarly good results were obtained for model reproductions of force-velocity and large-amplitude step and ramp responses. The model allowed reasonable predictions of contractile behavior by taking into account what is understood to be basic muscle contractile mechanisms.


2006 ◽  
Vol 127 (2) ◽  
pp. 95-107 ◽  
Author(s):  
Julian E. Stelzer ◽  
Lars Larsson ◽  
Daniel P. Fitzsimons ◽  
Richard L. Moss

Recent evidence suggests that ventricular ejection is partly powered by a delayed development of force, i.e., stretch activation, in regions of the ventricular wall due to stretch resulting from torsional twist of the ventricle around the apex-to-base axis. Given the potential importance of stretch activation in cardiac function, we characterized the stretch activation response and its Ca2+ dependence in murine skinned myocardium at 22°C in solutions of varying Ca2+ concentrations. Stretch activation was induced by suddenly imposing a stretch of 0.5–2.5% of initial length to the isometrically contracting muscle and then holding the muscle at the new length. The force response to stretch was multiphasic: force initially increased in proportion to the amount of stretch, reached a peak, and then declined to a minimum before redeveloping to a new steady level. This last phase of the response is the delayed force characteristic of myocardial stretch activation and is presumably due to increased attachment of cross-bridges as a consequence of stretch. The amplitude and rate of stretch activation varied with Ca2+ concentration and more specifically with the level of isometric force prior to the stretch. Since myocardial force is regulated both by Ca2+ binding to troponin-C and cross-bridge binding to thin filaments, we explored the role of cross-bridge binding in the stretch activation response using NEM-S1, a strong-binding, non-force–generating derivative of myosin subfragment 1. NEM-S1 treatment at submaximal Ca2+-activated isometric forces significantly accelerated the rate of the stretch activation response and reduced its amplitude. These data show that the rate and amplitude of myocardial stretch activation vary with the level of activation and that stretch activation involves cooperative binding of cross-bridges to the thin filament. Such a mechanism would contribute to increased systolic ejection in response to increased delivery of activator Ca2+ during excitation–contraction coupling.


2008 ◽  
Vol 131 (3) ◽  
pp. 275-283 ◽  
Author(s):  
Takako Terui ◽  
Munguntsetseg Sodnomtseren ◽  
Douchi Matsuba ◽  
Jun Udaka ◽  
Shin'ichi Ishiwata ◽  
...  

We investigated the molecular mechanism by which troponin (Tn) regulates the Frank-Starling mechanism of the heart. Quasi-complete reconstitution of thin filaments with rabbit fast skeletal Tn (sTn) attenuated length-dependent activation in skinned porcine left ventricular muscle, to a magnitude similar to that observed in rabbit fast skeletal muscle. The rate of force redevelopment increased upon sTn reconstitution at submaximal levels, coupled with an increase in Ca2+ sensitivity of force, suggesting the acceleration of cross-bridge formation and, accordingly, a reduction in the fraction of resting cross-bridges that can potentially produce additional active force. An increase in titin-based passive force, induced by manipulating the prehistory of stretch, enhanced length-dependent activation, in both control and sTn-reconstituted muscles. Furthermore, reconstitution of rabbit fast skeletal muscle with porcine left ventricular Tn enhanced length-dependent activation, accompanied by a decrease in Ca2+ sensitivity of force. These findings demonstrate that Tn plays an important role in the Frank-Starling mechanism of the heart via on–off switching of the thin filament state, in concert with titin-based regulation.


2010 ◽  
Vol 299 (5) ◽  
pp. C1127-C1135 ◽  
Author(s):  
Fabio C. Minozzo ◽  
Dilson E. Rassier

When activated muscle fibers are stretched at low speeds [≤2 optimal length ( Lo)/s], force increases in two phases, marked by a change in slope [critical force (Pc)] that happens at a critical sarcomere length extension ( Lc). Some studies attribute Pc to the number of attached cross bridges before stretch, while others attribute it to cross bridges in a pre-power-stroke state. In this study, we reinvestigated the mechanisms of forces produced during stretch by altering either the number of cross bridges attached to actin or the cross-bridge state before stretch. Two sets of experiments were performed: 1) activated fibers were stretched by 3% Lo at speeds of 1.0, 2.0, and 3.0 Lo/s in different pCa2+ (4.5, 5.0, 5.5, 6.0), or 2) activated fibers were stretched by 3% Lo at 2 Lo/s in pCa2+ 4.5 containing either 5 μM blebbistatin(+/−) or its inactive isomer (+/+). All stretches started at a sarcomere length (SL) of 2.5 μm. When fibers were activated at a pCa2+ of 4.5, Pc was 2.47 ± 0.11 maximal force developed before stretch (Po) and decreased with lower concentrations of Ca2+. Lc was not Ca2+ dependent; the pooled experiments provided a Lc of 14.34 ± 0.34 nm/half-sarcomere (HS). Pc and Lc did not change with velocities of stretch. Fibers activated in blebbistatin(+/−) showed a higher Pc (2.94 ± 0.17 Po) and Lc (16.30 ± 0.38 nm/HS) than control fibers (Pc 2.31 ± 0.08 Po; Lc 14.05 ± 0.63 nm/HS). The results suggest that forces produced during stretch are caused by both the number of cross bridges attached to actin and the cross bridges in a pre-power-stroke state. Such cross bridges are stretched by large amplitudes before detaching from actin and contribute significantly to the force developed during stretch.


1991 ◽  
Vol 98 (4) ◽  
pp. 657-679 ◽  
Author(s):  
M Yamakawa ◽  
Y E Goldman

Kinetics of the cross-bridge cycle in insect fibrillar flight muscle have been measured using laser pulse photolysis of caged ATP and caged inorganic phosphate (Pi) to produce rapid step increases in the concentration of ATP and Pi within single glycerol-extracted fibers. Rapid photochemical liberation of 100 microM-1 mM ATP from caged ATP within a fiber caused relaxation in the absence of Ca2+ and initiated an active contraction in the presence of approximately 30 microM Ca2+. The apparent second order rate constant for detachment of rigor cross-bridges by ATP was between 5 x 10(4) and 2 x 10(5) M-1s-1. This rate is not appreciably sensitive to the Ca2+ or Pi concentrations or to rigor tension level. The value is within an order of magnitude of the analogous reaction rate constant measured with isolated actin and insect myosin subfragment-1 (1986. J. Muscle Res. Cell Motil. 7:179-192). In both the absence and presence of Ca2+ insect fibers showed evidence of transient cross-bridge reattachment after ATP-induced detachment from rigor, as found in corresponding experiments on rabbit psoas fibers. However, in contrast to results with rabbit fibers, tension traces of insect fibers starting at different rigor tensions did not converge to a common time course until late in the transients. This result suggests that the proportion of myosin cross-bridges that can reattach into force-generating states depends on stress or strain in the filament lattice. A steady 10-mM concentration of Pi markedly decreased the transient reattachment phase after caged ATP photolysis. Pi also decreased the amplitude of stretch activation after step stretches applied in the presence of Ca2+ and ATP. Photolysis of caged Pi during stretch activation abruptly terminated the development of tension. These results are consistent with a linkage between Pi release and the steps leading to force production in the cross-bridge cycle.


Sign in / Sign up

Export Citation Format

Share Document