An Analytical Electron Microscopy and surface analysis study of diamond films

Author(s):  
A.E. Henderson ◽  
A.G. Fitzgerald ◽  
S.M. Potrous ◽  
B.E. Storey

The formation of diamond films by plasma assisted chemical vapour deposition (PACVD) techniques has become an area of intense interest over the past few years. These films have potential applications in optical devices, microelectronics and as wear resistant coatings. To exploit the unique properties of these diamond coatings they must be fully characterized.In this investigation polycrystalline diamond films produced by PACVD, on single crystal silicon substrates have been studied by a range of microbeam analytical techniques. Surface analyses have been made in a VG Microscopes HB100 UHV SEM by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). Depth composition profiles have been made by Auger electron spectroscopy. The silicon-diamond interface region has been investigated by x-ray microanalysis in a JEOL T300 SEM. The diamond films were prepared for transmission electron microscopy by dissolving away the silicon substrate in an HF/nitric acid solution. The resulting free standing diamond film was ion thinned to produce electron transparent areas. The thinned film was then sandwiched in a folding electron microscope grid for analysis in a JEOL 100C STEM.

1978 ◽  
Vol 32 (2) ◽  
pp. 175-177 ◽  
Author(s):  
L. Bradley ◽  
Y. M. Bosworth ◽  
D. Briggs ◽  
V. A. Gibson ◽  
R. J. Oldman ◽  
...  

The difficulties of nonuniform ion etching which hamper depth profiling by X-ray photoelectron spectroscopy (XPS) have been overcome by use of a mechanically scanned saddle-field ion source. The system and its calibration for uniformity are described, and its performance is illustrated by the depth profile of a Si3N4/SiO2/Si metal nitride oxide silicon device. This also allows the potential advantages of XPS profiling over Auger electron spectroscopy profiling to be discussed.


Sign in / Sign up

Export Citation Format

Share Document