Phase Shift of Electron Waves in A Rotating Frame of Reference

Author(s):  
F. Hasselbach ◽  
M. Nicklaus

After the first matter wave version of Sagnac’s classical light optical experiment of 1913, performed by Mercereau and Zimmermann with electron Cooper pairs in 1965, and the Sagnac experiment realized with neutrons by Werner et al. in 1979 , we report here on the first observation of the rotational phase shift of electron waves in vacuum.Theory. The Sagnac effect links classical physics, quantum physics and relativity. Using the special theory of relativity it can be derived that coherent waves, e.g. of light, neutrons or electrons, travelling around a finite area A experience a relative phaseshift

Author(s):  
Roman Szostek

The article presents formal proof that the Special Theory of Relativity is wrong, that is, the interpretation of the mathematics on which STR is based, proposed by Einstein is incorrect. The article shows that there are infinitely many kinematics in which one-way speed of light is always equal to c. The kinematics of Special Theory of Relativity (STR) is only one of those infinitely many kinematics. It presents that mathematics on which STR kinematics is based can be interpreted differently and this leads to other conclusions on the properties of this kinematics. In this article, the whole class of linear transformations of time and coordinate was derived. Transformations were derived on the assumption that conclusions from Michelson-Morley’s and Kennedy-Thorndikea’s experiments are met for the observer from each inertial frame of reference, i.e. that the mean velocity of light in the vacuum flowing along the way back and forth is constant. It was also assumed that there is at least one inertial frame of reference, in which the velocity of light in a vacuum in each direction has the same value c, and the space is isotropic for observers from this distinguished inertial frame of reference (universal frame of reference). Derived transformations allow for building many different kinematics according to Michelson-Morley’s and Kennedy-Thorndikea’s experiments. The class of transformations derived in the study is a generalization of transformations derived in the paper [10], which consists in enabling non-zero values of parameter e(v). The idea of such a generalization derives from the person, who gave me this extended transformations class for analysis and publication.


Author(s):  
Sampsa Korpela

In this article, the God’s relationship to time is viewed from the perspective of modern physics. The purpose is to examine new perspectives by introducing a theory of time that has been unexplored in contemporary theology. The paper begins with an analysis of the two competing views of God’s relationship to time: timelessness and temporality. They are reviewed from the perspective of the special theory of relativity. In contemporary theology, God’s timelessness is usually combined with the block universe theory, which is based on the concept of unchanging spacetime. God’s temporality is usually associated with presentism, which denies the concept of spacetime. This division reflects a central conflict in physics: the mainstream interpretation of the special theory of relativity treats time as unchanging spacetime, while quantum physics treats time as dynamic and flowing. To resolve this conflict between the ontologies of the special theory of relativity and quantum physics, the implicate order theory is introduced. The implicate order theory was developed by David Bohm (1917–1992), one of the most visionary physicists of the 20th century. After introducing the theory, it is applied to the context of God’s relationship to time. This produces interesting new opportunities for theological research.   


1988 ◽  
Vol 156 (9) ◽  
pp. 137-143 ◽  
Author(s):  
Anatolii A. Logunov ◽  
Yu.V. Chugreev

2021 ◽  
Vol 11 (3) ◽  
pp. 43-49
Author(s):  
Hamdoon A. Khan ◽  

With the consideration of the light which carries the photon particles, the Lorentz transformation was constructed with an impressive mathematical approach. But the generalization of that equation for all the velocities of the universe is direct enforcement on other things not to travel faster than light. It has created serious issues in every scientific research that was done in the last century based on the special theory of relativity. This paper replaces the velocity of light with some other velocities and shows us the possible consequences and highlights the issues of special relativity. If I travel through my past or future and was able to see another me there, who would be the real Hamdoon I or the one I see there in the past or future! If the real one is only me, the one I saw, is not me, so, I could not travel through my or someone else's past or future. Therefore, no one can travel through time. If both of us are the same, can the key of personal identity be duplicated or be separated into two or more parts? These are some of the fundamental philosophical arguments that annihilate the concept of time travel which is one of the sequels of special relativity.


2021 ◽  
Vol 58 (4) ◽  
pp. 175-195
Author(s):  
Vladimir P. Vizgin ◽  

The article is based on the concepts of epistemic virtues and epistemic vices and explores A. Einstein’s contribution to the creation of fundamental physical theories, namely the special theory of relativity and general theory of relativity, as well as to the development of a unified field theory on the basis of the geometric field program, which never led to success. Among the main epistemic virtues that led Einstein to success in the construction of the special theory of relativity are the following: a unique physical intuition based on the method of thought experiment and the need for an experimental justification of space-time concepts; striving for simplicity and elegance of theory; scientific courage, rebelliousness, signifying the readiness to engage in confrontation with scientific conventional dogmas and authorities. In the creation of general theory of relativity, another intellectual virtue was added to these virtues: the belief in the heuristic power of the mathematical aspect of physics. At the same time, he had to overcome his initial underestimation of the H. Minkowski’s four-dimensional concept of space and time, which has manifested in a distinctive flexibility of thinking typical for Einstein in his early years. The creative role of Einstein’s mistakes on the way to general relativity was emphasized. These mistakes were mostly related to the difficulties of harmonizing the mathematical and physical aspects of theory, less so to epistemic vices. The ambivalence of the concept of epistemic virtues, which can be transformed into epistemic vices, is noted. This transformation happened in the second half of Einstein’s life, when he for more than thirty years unsuccessfully tried to build a unified geometric field theory and to find an alternative to quantum mechanics with their probabilistic and Copenhagen interpretation In this case, we can talk about the following epistemic vices: the revaluation of mathematical aspect and underestimation of experimentally – empirical aspect of the theory; adopting the concepts general relativity is based on (continualism, classical causality, geometric nature of fundamental interactions) as fundamental; unprecedented persistence in defending the GFP (geometrical field program), despite its failures, and a certain loss of the flexibility of thinking. A cosmological history that is associated both with the application of GTR (general theory of relativity) to the structure of the Universe, and with the missed possibility of discovering the theory of the expanding Universe is intermediate in relation to Einstein’s epistemic virtues and vices. This opportunity was realized by A.A. Friedmann, who defeated Einstein in the dispute about if the Universe was stationary or nonstationary. In this dispute some of Einstein’s vices were revealed, which Friedman did not have. The connection between epistemic virtues and the methodological principles of physics and also with the “fallibilist” concept of scientific knowledge development has been noted.


Sign in / Sign up

Export Citation Format

Share Document