Identification of Crystalline Materials: Classification and Use of X-Ray Diffraction Patterns

1986 ◽  
Vol 1 (1) ◽  
pp. 2-6 ◽  
Author(s):  
J. D. Hanawalt ◽  
H. W. Rinn

In the course of the past few years, X-ray and spectroscopic methods of analysis have found an increasing usefulness at the Dow Chemical Company. There are a large number of different types of problems on which information can be obtained by the variations of apparatus and technic which are possible in these two fields. It is not the purpose of this paper, however, to discuss these methods or applications in general, but to describe in some detail a scheme of classifying and using X-ray diffraction patterns which has been found very helpful in one particular application of X-rays — namely, that of identifying unknown substances by means of their Hull powder diffraction patterns.The inherent power of X-ray diffraction as a practical means of chemical analysis was pointed out a good many years ago. Having a different theoretical basis and depending upon an entirely different technic than other methods, it would be expected to supplement the information to be obtained from other methods and, at times, to be applicable where other methods are not suitable. It appears, however, that the use of this method has not increased at a rate commensurate with its unique and valuable features, and that it is used by relatively few academic and industrial laboratories.

1989 ◽  
Vol 33 ◽  
pp. 389-396 ◽  
Author(s):  
Y. Yoshioka ◽  
T. Shinkai ◽  
S. Ohya

The development of linear position-sensitive detectors (PSD) has resulted in a large reduction of data acquisition times in the field of x-ray stress analysis. However, we also require two-dimensional (2-D) diffraction patterns for material evaluation. Especially, the microbeam x-ray diffraction technique gives valuable information on the structure of crystalline materials and this technique has been applied to fracture analysis by x-rays. Many kinds of 2-D PSD have been developed that have insufficient spatial resolution. So x-ray film has still been used as a 2-D detector, but it requires relatively long exposure times and then the process after exposure is very troublesome.


2007 ◽  
Vol 130 ◽  
pp. 7-14 ◽  
Author(s):  
Andrew N. Fitch

The highly-collimated, intense X-rays produced by a synchrotron radiation source can be harnessed to build high-resolution powder diffraction instruments with a wide variety of applications. The general advantages of using synchrotron radiation for powder diffraction are discussed and illustrated with reference to the structural characterisation of crystalline materials, atomic PDF analysis, in-situ and high-throughput studies where the structure is evolving between successive scans, and the measurement of residual strain in engineering components.


Author(s):  
Kannan M. Krishnan

X-rays diffraction is fundamental to understanding the structure and crystallography of biological, geological, or technological materials. X-rays scatter predominantly by the electrons in solids, and have an elastic (coherent, Thompson) and an inelastic (incoherent, Compton) component. The atomic scattering factor is largest (= Z) for forward scattering, and decreases with increasing scattering angle and decreasing wavelength. The amplitude of the diffracted wave is the structure factor, F hkl, and its square gives the intensity. In practice, intensities are modified by temperature (Debye-Waller), absorption, Lorentz-polarization, and the multiplicity of the lattice planes involved in diffraction. Diffraction patterns reflect the symmetry (point group) of the crystal; however, they are centrosymmetric (Friedel law) even if the crystal is not. Systematic absences of reflections in diffraction result from glide planes and screw axes. In polycrystalline materials, the diffracted beam is affected by the lattice strain or grain size (Scherrer equation). Diffraction conditions (Bragg Law) for a given lattice spacing can be satisfied by varying θ or λ — for study of single crystals θ is fixed and λ is varied (Laue), or λ is fixed and θ varied to study powders (Debye-Scherrer), polycrystalline materials (diffractometry), and thin films (reflectivity). X-ray diffraction is widely applied.


2009 ◽  
Vol 68 ◽  
pp. 69-76 ◽  
Author(s):  
S. Thanikaikarasan ◽  
T. Mahalingam ◽  
K. Sundaram ◽  
Tae Kyu Kim ◽  
Yong Deak Kim ◽  
...  

Cadmium iron selenide (Cd-Fe-Se) thin films were deposited onto tin oxide (SnO2) coated conducting glass substrates from an aqueous electrolytic bath containing CdSO4, FeSO4 and SeO2 by potentiostatic electrodeposition. The deposition potentials of Cadmium (Cd), Iron (Fe), Selenium (Se) and Cadmium-Iron-Selenide (Cd-Fe-Se) were determined from linear cathodic polarization curves. The deposited films were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by x-rays (EDX) and optical absorption techniques, respectively. X-ray diffraction patterns shows that the deposited films are found to be hexagonal structure with preferential orientation along (100) plane. The effect of FeSO4 concentration on structural, morphological, compositional and optical properties of the films are studied and discussed in detail.


1970 ◽  
Vol 14 ◽  
pp. 139-145
Author(s):  
W. S. Toothacker ◽  
L. E. Preuss

AbstractLobov et al., in Leningrad, and workers at this laboratory have been working on the idea of using x rays from radioactive sources for x ray diffraction analysis. The Russians have been using iron-55 produced by the (n, Y) reaction in their work with a small focusing camera which operates in the back reflection region. We have been using iron-55 produced by the (p,n) reaction in conjunction with a small Debye-Scherrer camera. The preliminary work of this laboratory was reported at this conference two years ago. At that time a 13 mCi iron-55 source was used in a two inch diameter Debye-Scherrer camera to obtain x-ray diffraction patterns of LiF. The exposure times were of the order of 120 hours and the reflection from the 200 plane was about 3 degrees wide. Since that time a new and more intense source has been constructed at Oak Ridge National Laboratories. With the new source it was possible to produce LiF diffraction patterns of the same density and resolution as before in a period of less than ten hours.The above mentioned diffraction patterns were made with the LiF powder placed in a 1.0 mm diameter glass capillary. After reduction of the glass capillary diameter to 0.5 mm and appropriate reduction of the collimator width, we were able to improve the resolution considerably with no accompanying reduction in line density. The LiF patterns obtained in this way required an exposure time of about 20 hours and the width of the reflection from the 200 plane has been reduced to about 1.5 degrees.Hence we are able to report a reduction in exposure time from 116 hours to 20 hours and an increase in resolution by a factor of two over the data reported here two years ago. Thus the concept of using x rays from an isotope for powder diffraction has changed from a laboratory curiosity into a technique with practical possibilities. Both sources mentioned above were produced by the (p, n) reaction. The 135 mCi source had a specific activity of about 400 Ci/gm. Since iron-55 sources have been made with specific activities of about 1000 Ci/gm, a considerable decrease in exposure time could be accomplished by using such a source. The application to this work of a position sensitive proportional counter as developed by Semmler will also be discussed.


2001 ◽  
Vol 19 (1) ◽  
pp. 125-131 ◽  
Author(s):  
KENICHI KINOSHITA ◽  
HIDEKI HARANO ◽  
KOJI YOSHII ◽  
TAKERU OHKUBO ◽  
ATSUSHI FUKASAWA ◽  
...  

For ultrafast material analyses, we constructed the time-resolved X-ray diffraction system utilizing ultrashort X-rays from laser-produced plasma generated by the 12-TW–50-fs laser at the Nuclear Engineering Research Laboratory. Ultrafast transient changes in laser-irradiated GaAs crystals were observed as X-ray diffraction patterns. Experimental results were compared with numerical analyses.


2004 ◽  
Vol 840 ◽  
Author(s):  
R. Spolenak

ABSTRACTIn the past years the concept of measuring strain by x-rays has changed significantly. The combination of 3rd generation synchrotron sources, advanced focusing techniques and large area detectors has made it possible to probe volumes smaller than a cubic micron. This devolopment has made it possible to probe microstrains directly without having to rely on highly sophisticated models to evaluate peak broadening effects. This paper will provide a review of the state of art of local strain measurements by x-rays, discuss their limitations, provide an outlook of where the field may be going within the next years and address the most important issues to be solved. Examples will be given for the current limits in terms of resolution in time, space, strain and intensity.


1986 ◽  
Vol 1 (2) ◽  
pp. 2-14 ◽  
Author(s):  
J. D. Hanawalt ◽  
H. W. Rinn ◽  
L. K. Frevel

Editor's Note: As part of our plan to reprint previously published papers of great historical interest, the editorial board is pleased to reproduce the following paper by Hanawalt, Frevel and Rinn. This paper was originally published in Volume 10 (1938) of the Analytical Ediction of “Industrial and Engineering Chemistry” and is considered by most diffractionists to be the classic work in qualitative identification of multiphase polycrystalline material. The original publication carried a foreword written by the editor of Industrial and Engineering Chemistry. This foreword ended with this prophetic statement:“There is reason to believe that this publication, which is made possible in this form by the generous financial assistance of the Dow Chemical Company, will serve to bring this method of analysis into general use in industrial and consulting analytical laboratories.”


Sign in / Sign up

Export Citation Format

Share Document