Seeding Date, Seeding Rate, and Row Spacing Affect Wheat (Triticum aestivum) and Cheat (Bromus secalinus)

1991 ◽  
Vol 5 (4) ◽  
pp. 707-712 ◽  
Author(s):  
Jeffrey A. Koscelny ◽  
Thomas F. Peeper ◽  
John B. Solie ◽  
Stanley G. Solomon

Field experiments were conducted in Oklahoma to determine the effects of winter wheat seeding date and cheat infestation level on cultural cheat control obtained by increasing winter wheat seeding rates and decreasing row spacing. Seeding rate and row spacing interactions influenced cheat density, biomass, or seed in harvested wheat (dockage) at two of three locations. Suppressive effects on cheat of increasing wheat seeding rates and reduced row spacings were greater in wheat seeded in September than later. At two other locations, increasing seeding rate from 67 to 101 kg ha–1or reducing row spacings from 22.5 to 15 cm increased winter wheat yield over a range of cheat infestation levels.

1993 ◽  
Vol 7 (2) ◽  
pp. 459-464 ◽  
Author(s):  
Greg G. Justice ◽  
Thomas F. Peeper ◽  
John B. Solie ◽  
Francis M. Epplin

In field experiments, wheat row spacing, seeding rate, and herbicide treatment affected cheat seed content of harvested wheat, wheat yield, and net returns. No individual practice or combination of practices consistently increased net returns from cheat-infested wheat. Net returns frequently were increased and never decreased by applying metribuzin at 420 g ha−1 or chlorsulfuron + metsulfuron at 21.9 + 4.4 g ha−1 or by increasing the seeding rate compared to baseline inputs. The data indicate that herbicide rates should not be reduced when row spacing is decreased and/or seeding rates increased.


1997 ◽  
Vol 11 (1) ◽  
pp. 30-34
Author(s):  
Jeffrey A. Koscelny ◽  
Thomas F. Peeper

Seven field experiments were conducted in Oklahoma to compare efficacy and wheat response to currently registered cheat suppression or control herbicide treatments. Chlorsulfuron + metsulfuron premix (5:1 w/w) at 26 g ai/ha applied PRE controlled cheat 20 to 61%, increased wheat grain yields at two of seven locations, and decreased dockage due to cheat at five of seven locations. Chlorsulfuron + metsulfuron at 21 g/ha tank-mixed with metribuzin at 210 g/ha, applied early fall POST, controlled cheat 36 to 98% and increased wheat yield at four of seven locations. Metribuzin applied POST in the fall at 420 g/ha controlled cheat 56 to 98% and increased wheat yields at five of seven locations. Both POST treatments decreased dockage at all locations.


1990 ◽  
Vol 4 (2) ◽  
pp. 306-313 ◽  
Author(s):  
Kenneth L. Ferreira ◽  
Thomas F. Peeper ◽  
Francis M. Epplin

Field experiments were conducted to determine the influence of winter wheat seeding date and forage removal on the efficacy of cheat control herbicides, forage and grain yields, and net returns to land, overhead, risk, and management for the various cheat control strategies. Economic analysis showed that net returns were higher when wheat was seeded during the traditional seeding period (October) than when either seeded early (September) for increased forage production or delayed (November) for cultural cheat control. Some herbicides were economically beneficial at two of three locations where the initial cheat population exceeded 170 plants/m2.


1995 ◽  
Vol 9 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Lora M. Franetovich ◽  
Thomas F. Peeper

Thirteen field experiments were conducted to evaluate quinclorac for cheat control in hard red winter wheat. Cheat control with quinclorac was variable. Quinclorac at 560 and 1120 g a.i./ha applied to tillered wheat controlled cheat 93 to 100% at four sites. In contrast, pooled over four other experiments and four application times, quinclorac at 420 g/ha and 560 g/ha controlled cheat only 20 and 31%, respectively. Quinclorac at 420 g/ha plus chlorsulfuron:metsulfuron (5:1) at 35 g a.i./ha applied PRE increased wheat yield 28% at one of three sites. At two of these sites, averaged over chlorsulfuron:metsulfuron rates of 0, 18, and 35 g a.i./ha, quinclorac at 280 and 420 g/ha applied POST, increased wheat yield 32 to 112%. In two cultivar tolerance experiments, quinclorac treatments did not damage any cultivar. Pooled over cultivars, yields were increased 7 and 10% when quinclorac at 280 and 560 kg/ha was applied, respectively. In a greenhouse experiment, quinclorac plus dicamba or esfenvalerate consistently reduced the leaf area of cheat in a manner suggesting synergistic effects. Of eight adjuvants evaluated in a laboratory experiment, only quinclorac plus the adjuvant BCH 864 01S reduced cheat leaf area more than quinclorac alone.


1990 ◽  
Vol 4 (3) ◽  
pp. 487-492 ◽  
Author(s):  
Jeffrey A. Koscelny ◽  
Thomas F. Peeper ◽  
John B. Solie ◽  
Stanley G. Solomon

Field experiments were conducted in Oklahoma to determine the effects of row spacing, cultivar, seeding rate, and water or ammonium polyphosphate fertilizer injection in the row at seeding, on the competitiveness of hard red winter wheat with cheat. Decreasing row spacing from 23 to 8 cm increased yield of weed-free wheat at two of three locations and cheat-infested wheat in six of ten experiments. Increasing seeding rate from 265 to 530 seeds m-2increased wheat yield. Injecting water at 20 ml m-1of row at seeding did not increase wheat emergence or yield. Cheat seed production was not consistently suppressed by any one cultivar. Juvenile growth habit was unrelated to wheat competitiveness.


Weed Science ◽  
1990 ◽  
Vol 38 (6) ◽  
pp. 532-535 ◽  
Author(s):  
Jeffrey A. Koscelny ◽  
Thomas F. Peeper

Field experiments were conducted to determine the interaction of grazing and herbicide treatments on cheat control and biomass, wheat biomass, wheat grain yield, and wheat yield components. Ethyl-metribuzin at 1120 g ai ha−1and metribuzin at 420 g ai ha−1reduced cheat biomass 91 to 99 and 97 to 98%, respectively. Grazing had no effect on herbicide efficacy. Grazing increased cheat biomass in the check by 24% at only one location but did not affect total wheat plus cheat biomass. With one exception, controlled cheat was replaced by wheat on a 1:1 biomass basis when herbicides caused no crop injury. All herbicide treatments increased grain yield, but grazing did not alter yield. At two locations, increased heads m−2and spikelets/head accounted for most of the grain yield increases, but at one location seeds/spikelet and weight/seed were also increased. Harvest index was unaffected.


1998 ◽  
Vol 12 (3) ◽  
pp. 421-425 ◽  
Author(s):  
Robert E. Blackshaw ◽  
William M. Hamman

Field experiments were conducted to determine suitable application timings and rates of MON 37500 for downy brome control in winter wheat. MON 37500 applied preemergence (PRE) or in fall postemergence (POST) provided better control of downy brome than when applied spring POST. MON 37500 at rates ranging from 19 to 33 g ai/ha applied PRE or fall POST controlled downy brome >85%. MON 37500 applied spring POST at 60 g/ha only suppressed growth of downy brome. Winter wheat was not visibly injured and maturity was not delayed by MON 37500 applied up to 60 g/ha at any of the application timings. Winter wheat yield responded positively to all MON 37500 treatments but PRE or fall POST applications usually resulted in greater yields than spring POST applications. Wheat yields progressively increased with increasing rates of MON 37500 up to 30–40 g/ha, above which yields tended to plateau or, in two instances, decline slightly. MON 37500 is an important new herbicide that should enable growers to better manage downy brome in winter wheat production systems.


1994 ◽  
Vol 8 (2) ◽  
pp. 317-323 ◽  
Author(s):  
Greg G. Justice ◽  
Thomas F. Peeper ◽  
John B. Solie ◽  
Francis M. Epplin

In field experiments at three locations, wheat row spacing, seeding rate, and herbicide treatment affected Italian ryegrass control, wheat yield, dockage in the grain, and net returns. Diclofop at 560 or 840 g ai/ha controlled Italian ryegrass better than chlorsulfuron at 18 or 26 g ai/ha. Net returns were increased at all locations by diclofop POST at either rate and at two locations by chlorsulfuron PRE at either rate. Although increasing the wheat seeding rate reduced dockage at two of three locations, net returns were maximized by herbicide application alone without increased seeding rates or reduced row spacing.


2000 ◽  
Vol 80 (4) ◽  
pp. 703-711 ◽  
Author(s):  
D. Spaner ◽  
A. G. Todd ◽  
D. B. McKenzie

Livestock farmers in Newfoundland presently import most of their feed grain, and local self-sufficiency in grain production is a desirable long-term goal. The overall objective of this work was to refine our understanding of winter wheat (Triticum aestivum L.) production in Newfoundland, with the aim of improving present cropping recommendations. We conducted trials near St. John's in 1998 and 1999 to examine the effect of seeding rate and topdress ammonium nitrate (N) fertilization rate on Borden winter wheat yield and yield components. We also conducted four seeding date trials in the same region. Optimum-treatment grain yields in our six trials ranged from 2.76 to 5.39 t ha−1. In years of variable winter kill, increasing seeding rate up to 450 seeds m−2 increased spikes m−2 at harvest, resulting in increased grain yield. Seeding rate, however, was not as important as N fertilization in maximizing grain yield. Increasing topdress fertilization to 60 kg N ha–1 increased spikes m–2 at harvest in years of variable winter kill, resulting in greater grain yield. In years of high winter survival, the main source of higher grain yield levels (through higher N application rates) was not achieved through greater spikes m−2 at harvest, but rather through an increase in kernel weight. Optimum grain yields occurred at seeding rates of 400 ± 50 seeds m−2, and at topdress fertilizer applications up to a rate of at least 30 kg N ha−1. Given the results of our seeding date experiments, in conjunction with previously developed climatic models, we now consider the optimum seeding date for the eastern region of Newfoundland to be August 31. Key words: Yield component analysis, two-dimensional partitioning, Triticum aestivum L., ammonium nitrate


2013 ◽  
Vol 27 (4) ◽  
pp. 768-777 ◽  
Author(s):  
Alexander Menegat ◽  
Ortrud Jäck ◽  
Jinwei Zhang ◽  
Kathrin Kleinknecht ◽  
Bettina U. Müller ◽  
...  

Japanese bindweed was found to be one of the most abundant and most difficult-to-control weed species during a 2-yr weed survey in more than 100 winter wheat fields in the North China Plain region. Multivariate data analysis showed that Japanese bindweed is most abundant at sites with comparative low nitrogen (N) fertilization intensities and low crop densities. To gain deeper insights into the biology of Japanese bindweed under various N fertilization intensities, winter wheat seeding rates, herbicide treatments, and their interactions, a 2-yr field experiment was performed. In nonfertilized plots, a herbicide efficacy (based on density reduction) of 22% for 2,4-D, and of 25% for tribenuron-methyl was found. The maximum herbicide efficacy in Nmin-fertilized plots (target N value based on expected crop yield minus soil mineral nitrogen content,) was 32% for 2,4-D and 34% for tribenuron-methyl. In plots fertilized according to the farmer's practices, a maximum herbicide efficacy of 72% for 2,4-D and of 64% for tribenuron-methyl could be observed. Furthermore, medium and high seeding rates improved the herbicide efficacy by at least 39% for tribenuron-methyl and 44% for 2,4-D compared to the low seeding rate. Winter wheat yield was not significantly affected by seeding rate itself, whereas at low and medium seeding rates, Nminfertilization was decreasing winter wheat yield significantly compared to the farmer's usual fertilization practice. At the highest seeding rate, Nminfertilization resulted in equal yields compared to the farmer's practices of fertilization.


Sign in / Sign up

Export Citation Format

Share Document