Weed Control in Oat (Avena sativa)-Alfalfa (Medicago sativa) and Effect on Next Year Corn (Zea mays) Yield

1992 ◽  
Vol 6 (4) ◽  
pp. 871-877
Author(s):  
Russell S. Moomaw

Field experiments were conducted from 1985 through 1989 to evaluate herbicide selectivity and impact on seeding-year yields of spring oat and underseeded alfalfa, and carryover weed control benefits from increased legume-fixed N for second-year dryland no-till corn. PRE metolachlor, pendimethalin, and prodiamine controlled green foxtail and POST bromoxynil or 2,4-DB controlled broadleaf weeds. These herbicides caused 0 to 20% alfalfa injury and 0 to 17% oat injury, and increased oat yield one of three years but did not increase the yield of underseeded alfalfa. POST pyridate, thifensulfuron, and tribenuron were too injurious to either oat, alfalfa, or both crops. Forage yields of annual ‘Nitro’ and perennial ‘Wrangler’ alfalfa seeded alone were greater than when they were underseeded in oat, with herbicides applied in both systems. As a result of drought in 1988 and 1989, yield of second-year corn planted after one-year alfalfa was not increased from potentially greater legume-fixed N. Dryland corn yield following monoculture oat or corn was 254% higher than corn following alfalfa.

1999 ◽  
Vol 13 (2) ◽  
pp. 404-410 ◽  
Author(s):  
Patrick W. Geier ◽  
Phillip W. Stahlman

Field experiments were conducted over 3 yr at two locations in northwest Kansas to evaluate the efficacy and crop tolerance of EXP 31130A alone and with other herbicides in corn. EXP 31130A alone and in combination with acetochlor, atrazine, or metolachlor controlled kochia and redroot pigweed 93% or greater regardless of location, year, or tillage system. Green foxtail control in 1997 and 1998 was > 90% with EXP 31130A in combination with chloroacetamide herbicides but varied among experiments with EXP 31130A alone. Control of puncturevine with EXP 31130A alone or in tank mixtures was 75% or greater at five of six sites. EXP 31130A alone and in combinations caused minor, early-season, corn leaf bleaching and/or stunting under conventional tillage. However, no injury was detected in no-till systems. In 1996, no-till corn receiving EXP 31130A treatments yielded similarly or up to 29% more than hand-weeded corn. Yields did not differ among treated, untreated, and hand-weeded corn in 1996 under conventional tillage, where weed interference was not as intense as under no-till conditions. Conventional-tillage corn receiving EXP 31130A alone or in tank mixtures in 1997 yielded similarly to hand-weeded corn. Averaged over experiments, corn yield in 1998 increased by 10 to 18% with applications of EXP 31130A alone or in combinations compared to untreated corn.


1983 ◽  
Vol 63 (1) ◽  
pp. 235-241 ◽  
Author(s):  
J. A. IVANY ◽  
J. R. ENMAN

Forage corn (Zea mays L.) was grown successfully in Prince Edward Island by no-till planting the corn into standing cereal stubble 15–20 cm tall using a Buffalo no-till seeder. Planting with the slot-type shoe in a preliminary experiment in 1978 gave better forage yields than planting with a slice-type shoe mainly because of better plant population achieved. Subsequent experiments in 1979–1981 using the slot-type shoe to no-till plant corn in cereal stubble gave good forage yields when adequate weed control was provided with herbicide treatment. Best control of quackgrass (Agropyron repens L. Beauv.) and dandelion (Taraxacum officinale Weber) and crop yields was achieved with glyphosate + atrazine (1.5 + 2.5 kg a.i./ha) or amitrole + atrazine (3.4 + 2.5 kg a.i./ha) applied preemergence after seeding corn and before corn emergence. Control of quack grass and dandelion with glyphosate or amitrole used alone ranged from 71–80%, but paraquat alone did not provide any weed control. Addition of atrazine to paraquat, glyphosate, or amitrole gave improved control of quackgrass and dandelion and higher forage corn yields. Addition of 2.5 kg a.i./ha atrazine gave better results than use of 1.0 kg a.i./ha of atrazine.Key words: Forage corn, no-till seeding, glyphosate, atrazine, aminotriazole, paraquat


Weed Science ◽  
1984 ◽  
Vol 32 (4) ◽  
pp. 460-467 ◽  
Author(s):  
Russell S. Moomaw ◽  
Alex R. Martin

Season-long weed control has been a goal of some producers of irrigated corn (Zea maysL.) to reduce competition, lessen weed seed production, facilitate crop harvest, improve water efficiency (particularly with furrow irrigation), and improve aesthetic properties of fields. Field experiments were conducted for 3 yr on sprinkler-irrigated corn on a loamy fine sand. Five herbicides applied at layby generally provided season-long control of grass weeds and reduced weed seed production up to 100%. Pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine] was particularly effective. Yields of irrigated corn were not increased by layby herbicide application. Use of corn rows spaced 91 cm apart and use of a shorter, early-maturing, horizontal-leaf corn cultivar resulted in greater weed growth and weed seed production than did use of 76-cm rows and a taller, full-season, upright-leaf corn cultivar. After nearly complete weed control with herbicides for 2 yr, withholding herbicide use in the third year allowed weed growth which reduced corn yield. Indications were that weed control efforts need to be continuous in irrigated corn production.


2014 ◽  
Vol 28 (2) ◽  
pp. 298-306 ◽  
Author(s):  
Kris J. Mahoney ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Eleven field experiments were conducted over a 3-yr period (2010, 2011, and 2012) in conventional- and no-till soybean with a flumioxazin and pyroxasulfone premix. PRE and preplant applications were evaluated for soybean injury, weed control, and yield compared to standard herbicides. Early-season soybean injury from flumioxazin/pyroxasulfone ranged from 1 to 19%; however, by harvest, soybean yields were similar across labeled rates (160 and 200 g ai ha−1), standard treatments, and the nontreated control. Flumioxazin/pyroxasulfone provided excellent control (99 to 100%) of velvetleaf, pigweed species (redroot pigweed and smooth pigweed), and common lambsquarters across almost all rates tested (80 to 480 g ai ha−1). Common ragweed, green foxtail, and giant foxtail control increased with flumioxazin/pyroxasulfone rate. The biologically effective rates varied between tillage systems. The flumioxazin/pyroxasulfone rate required to provide 80% control (R80) of pigweed was 3 and 273 g ai ha−1under conventional- and no-till, respectively. For common ragweed, the R80was 158 g ai ha−1under conventional tillage; yet, under no-till, the rate was nonestimable. The results indicate that flumioxazin/pyroxasulfone can provide effective weed control as a setup for subsequent herbicide applications.


1997 ◽  
Vol 11 (4) ◽  
pp. 748-754
Author(s):  
Gail A. Wicks ◽  
Garold W. Mahnken ◽  
Gordon E. Hanson

Imidazolinone-resistant and -tolerant corn hybrids give growers a new weed control option. Field experiments were conducted in 1993 and 1994 to evaluate imazethapyr for controlling weeds in no-till corn planted into winter wheat stubble in a winter wheat–ecofallow corn rotation. Imidazolinone-tolerant (IT) and imidazolinone-resistant (IR) corn were protected genetically from injury by imazethapyr that was applied preplant, preemergence, or postemergence to ‘Pioneer Brand 3417,’ ‘Pioneer Brand 3417 IR,’ ‘ICI Seeds 8532,’ and ‘ICI Seeds 8532 IT’ hybrids. No difference in corn injury occurred between IR and IT corn. Imazethapyr applied to resistant or tolerant corn hybrids could be used to control weeds in ecofallow corn. Imazethapyr at 35 or 70 g ai/ha controlled triazine-resistant kochia better than the standard herbicide treatment of metolachlor plus cyanazine.


1998 ◽  
Vol 12 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Ronald F. Krausz ◽  
George Kapusta

Field experiments were conducted in 1994 and 1995 to evaluate weed control in imidazolinone-resistant corn with postemergence applications of imidazolinone and sulfonylurea herbicides. Imazethapyr controlled 100% of redroot pigweed, jimsonweed, and eastern black nightshade. Control of fall panicum with imazethapyr was inconsistent, with control ranging from 42 to 85%. Imazethapyr provided less than 55% control of common lambsquarters and 43% of large crabgrass. Imazethapyr plus either atrazine, 2,4-D, or dicamba increased control of common lambsquarters compared to imazethapyr alone. Fall panicum control was > 95% with nicosufluron. CGA-152005 and MON 12000 did not control eastern black nightshade. In 1995, corn yield was greater with the hand-weeded check compared to all herbicide treatments. The greatest return over herbicide cost with imazethapyr was obtained with imazethapyr plus atrazine. Nicosulfuron plus CGA-152005 provided the greatest return over herbicide cost when averaged across years.


1997 ◽  
Vol 11 (3) ◽  
pp. 436-443 ◽  
Author(s):  
Scott Glenn ◽  
William H. Phillips ◽  
Pablo Kalnay

Control and regrowth of hemp dogbane, wild blackberry, and triazine-resistant common lambsquarters (TR-CHEAL) were studied in no-till corn from 1992 to 1994. Hemp dogbane, wild blackberry, and TR-CHEAL population increased 10, 123, and 177%, respectively, between 1992 and 1994 in plots treated with PRE applications of paraquat, atrazine, and metolachlor (weedy checks). POST applications of tank mixtures of 35 g ai/ha nicosulfuron or 20 g/ha primisulfuron with 280 g/ha 2,4-D or 140 g/ha dicamba, and 560 g/ha dicamba applied alone controlled hemp dogbane, wild blackberry, and TR-CHEAL 67 to 98%. These treatments reduced the population or prevented expansion of these weeds the year following treatment. In 1992, corn yield response to weed control was inconsistent. In 1993 and 1994, all plots treated with POST herbicides yielded higher than the weedy check. Corn yield of plots treated with combinations of nicosulfuron or primisulfuron with 2,4-D or dicamba and 560 g/ha dicamba applied alone were 102 to 149% and 124 to 153% higher than the weedy check in 1993 and 1994, respectively.


2017 ◽  
Vol 31 (4) ◽  
pp. 496-502 ◽  
Author(s):  
Daniel O. Stephenson ◽  
Jason A. Bond ◽  
James L. Griffin ◽  
Randall L. Landry ◽  
Brandi C. Woolam ◽  
...  

Field experiments were conducted in Louisiana and Mississippi from 2011 through 2013 to evaluate crop injury, weed control, and yield in field corn following pyroxasulfone applied PRE and POST. Pyroxasulfone PRE or POST did not injure corn at any evaluation. Barnyardgrass control was not improved with the addition of any POST treatment to pyroxasulfone alone or atrazine plus pyroxasulfone PRE; however, all POST treatments increased barnyardgrass control to at least 95% at all evaluations following atrazine PRE. All treatments that contained a PRE followed by POST application controlled browntop millet ≥90% at all evaluations. All POST treatments increased ivyleaf morningglory control to ≥92% following atrazine or pyroxasulfone alone PRE. However, control with atrazine plus pyroxasulfone PRE was similar or greater 28 d after POST than all treatments that received a POST application. In the absence of a POST treatment, pyroxasulfone or atrazine plus pyroxasulfone PRE controlled Palmer amaranth 93 to 96% at all evaluations, but atrazine alone PRE provided 84, 82, and 66% control 7, 14, and 28 d after POST, respectively. All programs that contained a PRE followed by POST herbicide treatment controlled Palmer amaranth >90% at all evaluations. Corn yield following all treatments except atrazine alone PRE and the nontreated were similar and ranged from 10990 to 12330 kg ha−1. This research demonstrated that pyroxasulfone can be a valuable tool for weed management in a corn weed management program.


Weed Science ◽  
1988 ◽  
Vol 36 (5) ◽  
pp. 648-652 ◽  
Author(s):  
John S. Wilson ◽  
A. Douglas Worsham

The combination of glyphosate and 2,4-D at various rates was evaluated for controlling existing weeds at planting in no-till corn and soybeans. Herbicide combinations in soybeans also included paraquat plus 2,4-D, linuron, or diuron. Standard treatments included glyphosate (0.6 and 1.1 kg ae/ha) and paraquat (0.3 and 0.6 kg ai/ha), and 2,4-D (0.6 kg ae/ha) alone. For corn, the addition of 2,4-D to glyphosate did not improve weed control, although the addition of 2,4-D to paraquat did improve horseweed control. Corn yield with the herbicide combinations was higher than that for the nonselective herbicides alone. Although initial weed control was good in soybeans, weed regrowth in all paraquat alone treatments was substantial, especially with horseweed. The addition of 2,4-D to paraquat improved control of horseweed and tall morningglory. The addition of linuron or diuron to paraquat improved horseweed and common ragweed control, whereas the addition of 2,4-D to glyphosate improved the control of tall morningglory but not the other weed species. Generally, after 4 weeks, all glyphosate treatments provided better horseweed control than all paraquat treatments. Paraquat plus either linuron or diuron and glyphosate alone or in combination with 2,4-D gave the highest soybean yields.


2020 ◽  
pp. 1-6
Author(s):  
Nicole M. Langdon ◽  
Nader Soltani ◽  
Alan J. Raedar ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

Abstract Tolpyralate is a new 4-hydroxyphenyl-pyruvate dioxygenase (HPPD)–inhibiting herbicide for weed control in corn. Previous research has reported efficacy of tolpyralate + atrazine on several annual grass and broadleaf weed species; however, no studies have evaluated weed control of tolpyralate + atrazine depending on time-of-day (TOD) of application. Six field experiments were conducted over a 2-yr period (2018, 2019) near Ridgetown, ON, to determine if there is an effect of TOD of application on tolpyralate + atrazine efficacy on common annual grass and broadleaf weeds. An application was made at 3-h intervals beginning at 06:00 h with the last application at 24:00 h. There was a slight TOD effect on velvetleaf, pigweed species, and common ragweed control with tolpyralate + atrazine; however, the magnitude of change throughout the day was ≤3% at 2, 4, or 8 wk after application (WAA). There was no effect of TOD of tolpyralate + atrazine on the control of lambsquarters, barnyardgrass, and green foxtail. All weed species were controlled ≥88% at 8 WAA. There was no effect of TOD of tolpyralate + atrazine application on corn yield. Results of this study show no evidence of a TOD effect on weed control efficacy with tolpyralate + atrazine.


Sign in / Sign up

Export Citation Format

Share Document