In-Furrow Terbufos Reduces Field and Sweet Corn (Zea mays) Tolerance to Nicosulfuron

1993 ◽  
Vol 7 (4) ◽  
pp. 934-939 ◽  
Author(s):  
Cathy A. Morton ◽  
R. Gordon Harvey ◽  
James J. Kells ◽  
Douglas A. Landis ◽  
William E. Lueschen ◽  
...  

Field experiments were conducted in Michigan, Minnesota, and Wisconsin in 1990 to explore interactions between nicosulfuron applied POST and terbufos insecticide at 0.06 or 0.11 g ai/m of row applied in-furrow on ‘Pioneer 3751’ field corn and ‘Jubilee’ sweet corn. Nicosulfuron at 0, 70, and 140 g ai/ha plus nonionic surfactant and 28% nitrogen fertilizer was applied to both corn types. Field corn response to nicosulfuron and terbufos was similar at all locations, whereas sweet corn injury varied with location. Nicosulfuron injured field corn more when applied at the four-leaf than the three-leaf stage. Injury to both corn types increased as nicosulfuron rate increased or when applied following terbufos. Nicosulfuron at 140 g/ha without terbufos did not reduce yield of either corn type; however, corn previously treated in-furrow with terbufos reduced yield.

1991 ◽  
Vol 5 (1) ◽  
pp. 130-136 ◽  
Author(s):  
Cathy A. Morton ◽  
R. Gordon Harvey ◽  
James J. Kells ◽  
William E. Lueschen ◽  
Vincent A. Fritz

Field studies were conducted in Michigan, Minnesota, and Wisconsin to explore interactions among DPX-V9360 herbicide applied postemergence, terbufos insecticide applied as an in-furrow treatment, and the environment. Field corn (‘Pioneer 3751’) and sweet corn (‘Jubilee’) were planted with and without an in-furrow application of terbufos. DPX-V9360 was applied postemergence when the corn was in the 4- to 6-leaf stage at 0, 35, 70, 140, and 280 g ai ha-1with nonionic surfactant and 28% N fertilizer solution. Crop response to DPX-V9360 was similar at all three locations, varying only in magnitude of injury. Crop injury was greater with Jubilee sweet corn than with Pioneer 3751 field corn. Injury to both hybrids increased as DPX-V9360 application rate increased. Application of terbufos increased injury from DPX-V9360 to both hybrids. Significant yield reduction did not occur with either hybrid when DPX-V9360 was applied at rates of 140 g ha-1or less and no terbufos was applied.


1992 ◽  
Vol 6 (1) ◽  
pp. 52-56 ◽  
Author(s):  
Prasanta C. Bhowmik ◽  
Betsey M. O'Toole ◽  
John Andaloro

Four field experiments were conducted during 1988 and 1989 to determine the effects of POST application of nicosulfuron on quackgrass control in conventional field corn. A single application of nicosulfuron at 35 to 70 g ha–1applied to four- to six-leaf quackgrass controlled over 90% of quackgrass five weeks after treatment. Nicosulfuron at 35 g ha–1applied at the one- to three-leaf stage was not as effective as the same rate applied at the four- to six-leaf stage. When nicosulfuron at 35 g ha–1was applied to four- to six-leaf quackgrass, over 80% of the quackgrass regrowth was controlled one year later. Nicosulfuron did not injure ‘Agway 584S’ corn at the highest rate (140 g ha–1) tested and did not reduce silage or grain yield.


1990 ◽  
Vol 4 (3) ◽  
pp. 615-619 ◽  
Author(s):  
Chester L. Foy ◽  
Harold L. Witt

Five field experiments were conducted at two locations in Virginia during 1988–89 to evaluate DPX-V9360 and CGA-136872 for postemergence control of johnsongrass in field corn grown under no-till and conventional conditions. DPX-V9360 at rates of 35 (except in no-till plots), 52, and 69 g ai ha-1applied to 8-leaf johnsongrass was 88 to 98% effective in 1988. CGA-136872 at 25, 49, and 99 g ha-1was 80% effective at the highest rate. Applications of these herbicides to 6-leaf johnsongrass resulted in 69% or less control. DPX-V9360 at 35, 52, and 69 g ha-1and CGA-136872 at 20 and 40 g ha-1applied to johnsongrass up to 48 cm in height provided 77 to 97% control at 7 WAT3in an excellent stand of conventionally planted corn during 1989. Crop yields were more than doubled with herbicide treatments relative to yields in control plots. At a second location where crop damage caused by other factors resulted in a weak stand, DPX-V9360 provided 61 to 96% control compared to 29 to 56% control with CGA-136872.


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 568-573 ◽  
Author(s):  
Stevan Z. Knezevic ◽  
Stephan F. Weise ◽  
Clarence J. Swanton

Redroot pigweed is a major weed in corn throughout Ontario. Field experiments were conducted at two locations in 1991 and 1992 to determine the influence of selected densities and emergence times of redroot pigweed on corn growth and grain yield. Redroot pigweed densities of 0.5, 1, 2, 4 and 8 plants per m of row were established within 12.5 cm on either side of the corn row. In both years, redroot pigweed seeds were planted concurrently and with corn at the 3- to 5-leaf stage of corn growth. A density of 0.5 redroot pigweed per m of row from the first (earlier) emergence date of pigweed (in most cases, up to the 4-leaf stage of corn) or four redroot pigweed per m of row from the second (later) emergence date of pigweed (in most cases, between the 4- and 7-leaf stage of corn) reduced corn yield by 5%. Redroot pigweed emerging after the 7-leaf stage of corn growth did not reduce yield. Redroot pigweed seed production was dependent upon its density and time of emergence. The time of redroot pigweed emergence, relative to corn, may be more important than its density in assessing the need for postemergence control.


Weed Science ◽  
1996 ◽  
Vol 44 (2) ◽  
pp. 339-344 ◽  
Author(s):  
Darren K. Robinson ◽  
David W. Monks ◽  
James D. Burton

LAB 145 138 (LAB) was evaluated as a safener to improve sweet corn tolerance to nicosulfuron applied POST alone or with terbufos applied in the planting furrow or bentazon applied POST. To ensure enhanced injury for experimental purposes, nicosulfuron was applied at twice the registered rate alone or mixed with bentazon at the six- to seven-leaf growth stage of corn previously treated with the highest labeled rate of terbufos 15 G formulation. LAB applied as a seed treatment (ST) or POST at the two- to three-, four- to five-, or six- to seven-leaf growth stages reduced height reduction and yield loss from nicosulfuron applied POST in combination with terbufos applied in-furrow. LAB applied POST at the four- to five-leaf growth stage was most effective in preventing injury from this treatment, with yield reduced only 8% compared with 54% from the nicosulfuron and terbufos treatment. LAB applied POST at the eight- to nine-leaf growth stage did not alleviate injury. With the nicosulfuron, terbufos, and bentazon combination, LAB applied POST at the three- to four- or six- to seven-leaf growth stages decreased height reduction and yield loss caused by this combination, with LAB at the three- to four-leaf growth stage being most effective.


1994 ◽  
Vol 8 (2) ◽  
pp. 289-295 ◽  
Author(s):  
Cathy A. Morton ◽  
R. Gordon Harvey ◽  
John L. Wedberg ◽  
James J. Kells ◽  
Douglas A. Landis ◽  
...  

Field experiments were conducted in Michigan, Minnesota, and Wisconsin to evaluate injurious interactions between nicosulfuron herbicide applied POST and nine insecticides applied at planting on ‘Pioneer 3751’ field corn in 1991. Insecticides were applied in-furrow, T-band, and surface band at planting. Corn injury from nicosulfuron and terbufos applications was more severe in Wisconsin than in Michigan. No corn injury was observed in Minnesota. Terbufos 15% ai granule (15G) or 20% ai controlled release granule (20CR) increased nicosulfuron injury to corn in Wisconsin. Nicosulfuron at 35 g ai/ha caused the greatest vigor reduction following terbufos 15G, intermediate vigor reduction following terbufos 20CR, phorate 20G, or phorate 20CR, and the least vigor reduction following fonofos, chlorpyrifos, chlorethoxyfos, tefluthrin, or carbofuran in Wisconsin.


1994 ◽  
Vol 74 (2) ◽  
pp. 375-381 ◽  
Author(s):  
M. E. Reidy ◽  
C. J. Swanton

Laboratory and field experiments were established to determine the optimum dose and timing of postemergence applications of DPX-79406 for quackgrass control. Four node quackgrass rhizome fragments from each biotype were grown under controlled conditions. At the three-to-four-leaf stage, quackgrass plants were sprayed with DPX-79406 and evaluated for control. A significant response of quackgrass biotypes to DPX-79406 was evident only at lower doses. In the field, quackgrass was effectively controlled by all doses of DPX-79406. Significant growth-stage effects were observed for quackgrass shoot and rhizome dry weights in the year of application and in the year following application. There was a significant interaction between year and growth stage. In 1990, quackgrass biomass was greater when DPX-79406 was applied at the two-to-three-leaf stage of quackgrass than at the four-to-five-leaf stage. In 1991, however, the opposite occurred. Within a growth stage, the 6.25 g ha−1 dose was as effective for controlling quackgrass as 18.5 g ha−1, in both years of the study. In 1991, significant decreases in corn yield were observed for DPX-79406 doses of > 12.5 g ha−1 applied at the four-to-five-leaf stage of quackgrass. For all the variables studied, DPX-79406 doses of 6.25–12.5 g ha−1 resulted in consistent control of quackgrass. Key words: DPX-79406, nicosulfuron, rimsulfuron, quackgrass, Elytrigia repens, corn, Zea mays


1981 ◽  
Vol 17 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Y. Kapulnik ◽  
S. Sarig ◽  
I. Nur ◽  
Y. Okon ◽  
J. Kigel ◽  
...  

SUMMARYInoculatingZea mays(three cultivars),Sorghum bicolor, Panicum miliaceumandSetaria italicawith nitrogen-fixing bacteria of the genus Azospirillum in Northern Negev and Bet Shean Valley field experiments resulted in significant increases in yield of grain and foliage of commercial value. It was concluded that inoculating summer cereal crops in Israel may save valuable nitrogen fertilizer.


HortScience ◽  
2008 ◽  
Vol 43 (1) ◽  
pp. 170-172 ◽  
Author(s):  
Sarah R. Sikkema ◽  
Nader Soltani ◽  
Peter H. Sikkema ◽  
Darren E. Robinson

Pyroxasulfone is an experimental herbicide for use in field corn (Zea mays L.) and soybean that may have potential for weed management in sweet corn. Tolerance of eight sweet corn hybrids to pyroxasulfone applied preemergence (PRE) at rates of 0, 209, and 418 g·ha−1 a.i. were studied at two Ontario locations in 2005 and 2006. Pyroxasulfone applied PRE at 209 and 418 g·ha−1 caused minimal (less than 3%) injury in Harvest Gold, GH2041, GH9589, GSS9299, GG214, GG446, GG763, and GG447 sweet corn hybrids at 7, 14, and 28 days after emergence. Pyroxasulfone applied PRE did not reduce plant height, cob size, or yield of any of the sweet corn hybrids tested in this study. Based on these results, pyroxasulfone applied PRE at the rates evaluated can be safely used for weed management in Harvest Gold, GH2041, GH9589, GSS9299, GG214, GG446, GG763, and GG447 sweet corn.


1999 ◽  
Vol 13 (2) ◽  
pp. 367-373 ◽  
Author(s):  
Enrique Rosales-Robles ◽  
James M. Chandler ◽  
Scott A. Senseman ◽  
Eric P. Prostko

Johnsongrass, a tall, coarse, perennial grass, is the second most common and troublesome weed in field corn in Texas. Field experiments were conducted in 1996 to 1998 to evaluate an integrated johnsongrass management program in bedded and irrigated field corn. Nicosulfuron at 26.3 g ai/ha applied banded over the row to 50% of the planted area plus one cultivation resulted in johnsongrass control of aboveground and rhizome biomass and in corn yield comparable to the labeled rate (35 g ai/ha) when applied two consecutive years in the same plots. This treatment reduced cost 27% and reduced herbicide input 62% compared to nicosulfuron applied broadcast at labeled rate without cultivation. Economic benefits of this johnsongrass management program are promising for field corn producers.


Sign in / Sign up

Export Citation Format

Share Document