Weed Management in Transplanted Bell Pepper (Capsicum frutescens) with Clomazone and Rimsulfuron

1998 ◽  
Vol 12 (3) ◽  
pp. 458-462 ◽  
Author(s):  
John A. Ackley ◽  
Henry P. Wilson ◽  
Thomas E. Hines

In field studies, in 1993, 1994, and 1995, clomazone at 390 g ai/ha and rimsulfuron at 35 g ai/ha were evaluated preplant incorporated (PPI) and postemergence (POST), respectively, for weed control and crop response in transplanted ‘Keystone RG3’ bell pepper. Clomazone did not injure bell pepper. Common lambsquarters and jimsonweed control was 77 to 95% by clomazone treatments but was variable by rimsulfuron treatments at 41 to 93% common lambsquarters control and 42 to 68% jimsonweed control; common ragweed control by both herbicides was unacceptable. Injury by rimsulfuron to bell pepper in the field was 19 to 47% at 21 DAT. In the greenhouse, injury to Keystone RG3 and three additional bell pepper varieties, ‘Camelot,’ ‘Jupiter,’ and ‘Memphis’ was similar at 44 to 62% by rimsulfuron at 17 to 35 g/ha POST, and bell pepper had lower height and dry weight than untreated controls. In the greenhouse, jimsonweed control was below 49% and black nightshade control was below 23% by 17 to 35 g/ha rimsulfuron. In these studies, clomazone controlled common lambsquarters and jimsonweed without injury to bell pepper. The solanaceous weeds treated in this study were not well controlled by rimsulfuron, and bell pepper was not sufficiently tolerant to rimsulfuron to permit its use in this crop.

1999 ◽  
Vol 13 (1) ◽  
pp. 104-111 ◽  
Author(s):  
Lee R. Van Wychen ◽  
R. Gordon Harvey ◽  
Mark J. Vangessel ◽  
Thomas L. Rabaey ◽  
David J. Bach

Field studies were conducted at Arlington, WI, in 1996 and 1997 and at Georgetown, DE, and LeSueur, MN, in 1997 to determine weed control efficacy, crop injury, and yield response of PAT-transformed sweet corn to glufosinate-based weed management. Sequential applications of glufosinate 10 to 18 d apart at 0.4 and 0.3 kg ai/ha controlled common lambsquarters, common ragweed, velvetleaf, wild-proso millet, and fall panicum 90% or better at all locations. Weed control varied little among 0.3, 0.4, or 0.3 and 0.3 (sequential) kg/ha glufosinate rates. Glufosinate applied alone, with, or following atrazine controlled velvetleaf 90% or greater but was less consistent on common ragweed and common lambsquarters (73 to 100%). Atrazine plus metolachlor applied preemergence (PRE) and glufosinate applied alone postemergence (POST) provided inconsistent wild-proso millet and fall panicum control (43 to 99%). Metolachlor followed by glufosinate improved consistency of grass control (> 76%). Glufosinate followed by cultivation provided 80% or greater control of velvetleaf and wild-proso millet. Glufosinate did not injure or delay maturity of PAT-transformed sweet corn. Sweet corn treated with glufosinate resulted in yields greater than or equal to the sweet corn that was hand-weeded or received a standard herbicide treatment.


1998 ◽  
Vol 12 (2) ◽  
pp. 293-299 ◽  
Author(s):  
Kelly A. Nelson ◽  
Karen A. Renner

Field and greenhouse experiments were conducted to evaluate postemergence (POST) soybean injury and weed control with CGA-277476 and cloransulam-methyl alone and in tank mixtures. In the field, visible soybean injury was 12 to 14% from CGA-277476 and 9 to 13% from cloransulam-methyl 7 d after treatment. Tank mixtures of either herbicide with acifluorfen or acifluorfen plus thifensulfuron were more injurious than CGA-277476 or cloransulam-methyl applied alone. Both CGA-277476 and cloransulam-methyl reduced velvetleaf dry weight 82%, and cloransulam-methyl reduced common ragweed dry weight 92%. Neither herbicide adequately controlled common lambsquarters, redroot pigweed, nor eastern black nightshade. The addition of acifluorfen to the spray solution improved common ragweed, common lambsquarters, redroot pigweed, and eastern black nightshade control with CGA-277476 and improved common lambsquarters, redroot pigweed, and eastern black nightshade control with cloransulam-methyl. Tank mixing thifensulfuron with CGA-277476 or cloransulam-methyl increased common lambsquarters and redroot pigweed control. In the greenhouse, CGA-277476 at 20 g ai/ha reduced velvetleaf dry weight 98%, and 79 g/ha was required to reduce common ragweed dry weight 93%. Cloransulam-methyl at 4.4 g ai/ha reduced velvetleaf dry weight 98% and common ragweed dry weight 94% at 8.8 g/ha. Chlorimuron reduced yellow nutsedge dry weight more than CGA-277476 or cloransulam-methyl. Antagonism of POST graminicide activity by CGA-277476 was grass species and graminicide related. CGA-277476 reduced giant foxtail control by clethodim but not by quizalofop. Cloransulam-methyl tank mixed with clethodim or quizalofop controlled giant foxtail.


1995 ◽  
Vol 9 (2) ◽  
pp. 236-242 ◽  
Author(s):  
Troy A. Bauer ◽  
Karen A. Renner ◽  
Donald Penner

Imazethapyr and bentazon were applied with petroleum oil adjuvant in a factorial arrangement to weed species in greenhouse and field research to determine if postemergence weed control by imazethapyr was antagonized when bentazon was tank-mixed. Tank-mixing 840 g/ha of bentazon with 13 or 27 g/ha of imazethapyr increased redroot pigweed and eastern black nightshade dry weight as compared to Colby's expected values in the greenhouse. However, weed control was not reduced in field studies. Subsequent greenhouse studies indicated that soil interception and resulting root uptake of imazethapyr increased redroot pigweed control. Bentazon decreased foliar absorption of14C-imazethapyr by 15% and translocation of14C from the treated leaf by more than 50% compared tol4C-imazethapyr applied alone.


2009 ◽  
Vol 23 (3) ◽  
pp. 391-397 ◽  
Author(s):  
Wesley J. Everman ◽  
Scott B. Clewis ◽  
Alan C. York ◽  
John W. Wilcut

Field studies were conducted near Clayton, Lewiston, and Rocky Mount, NC in 2005 to evaluate weed control and cotton response to preemergence treatments of pendimethalin alone or in a tank mixture with fomesafen, postemergence treatments of glufosinate applied alone or in a tank mixture withS-metolachlor, and POST-directed treatments of glufosinate in a tank mixture with flumioxazin or prometryn. Excellent weed control (> 91%) was observed where at least two applications were made in addition to glufosinate early postemergence (EPOST). A reduction in control of common lambsquarters (8%), goosegrass (20%), large crabgrass (18%), Palmer amaranth (13%), and pitted morningglory (9%) was observed when residual herbicides were not included in PRE or mid-POST programs. No differences in weed control or cotton lint yield were observed between POST-directed applications of glufosinate with flumioxazin compared to prometryn. Weed control programs containing three or more herbicide applications resulted in similar cotton lint yields at Clayton and Lewiston, and Rocky Mount showed the greatest variability with up to 590 kg/ha greater lint yield where fomesafen was included PRE compared to pendimethalin applied alone. Similarly, an increase in cotton lint yields of up to 200 kg/ha was observed whereS-metolachlor was included mid-POST when compared to glufosinate applied alone, showing the importance of residual herbicides to help maintain optimal yields. Including additional modes of action with residual activity preemergence and postemergence provides a longer period of weed control, which helps maintain cotton lint yields.


2006 ◽  
Vol 20 (3) ◽  
pp. 651-657 ◽  
Author(s):  
Wesley J. Everman ◽  
Scott B. Clewis ◽  
Zachary G. Taylor ◽  
John W. Wilcut

Field studies were conducted at Lewiston–Woodville and Rocky Mount, NC in 2001 and 2002 to evaluate weed control and peanut response to POST treatments of diclosulam at various rates and application timings. Diclosulam controlled common ragweed and entireleaf morningglory when applied within 35 d after planting (DAP). Common ragweed 61 cm tall was controlled ≥92% with 4 to 13 g ai/ha diclosulam and larger common ragweed (107 to 137 cm tall) were controlled ≥97% with 27 g/ha diclosulam. Common lambsquarters was controlled 62% or less with all diclosulam POST treatments following metolachlor applied PRE, which provided 48% control. Peanut injury was less than 15% with all diclosulam POST treatments and was transitory. In separate studies, POST diclosulam treatments did not affect peanut yield in a weed-free environment. Peanut yield in weedy environments was reduced as the diclosulam application timing was delayed because of early season weed interference. A linear relationship was observed between yield and application timing with yield decreasing as application timing was delayed. This yield response documents the importance of early season weed management for maximizing peanut yield potential. Virginia peanut varieties were not affected by different POST rates of diclosulam; however, early season peanut injury showed a linear and quadratic relationship with diclosulam rate and was less than 14% at rates as high as 71 g/ha, and was not apparent by late season.


1997 ◽  
Vol 11 (3) ◽  
pp. 453-459 ◽  
Author(s):  
William G. Johnson ◽  
J. Andrew Kendig ◽  
Raymond E. Massey ◽  
Michael S. Defelice ◽  
Chad D. Becker

Field studies were conducted at three sites in 1993 and 1994 to evaluate weed control, crop response, and economic returns to 0.5× and 1× postemergence rates of chlorimuron, chlorimuron plus quizalofop, bentazon plus acifluorfen, fluazifop plus fenoxaprop, imazethapyr, and imazethapyr plus clethodim in no-till narrow-row soybean production. Common lambsquarters, ivyleaf morningglory, and common ragweed were controlled equally with 0.5× rates applied early postemergence and 1× rates applied mid-postemergence. Control of giant foxtail, large crabgrass, and common cocklebur was generally greater with 1× rates mid-postemergence than with 0.5× rates early postemergence. Soybean yields were equivalent with 0.5× and 1× rates. Soybean yields and net income were highest with 1× and 0.5× rates of chlorimuron plus quizalofop and imazethapyr plus clethodim, and metolachlor preemergence (PRE) followed by 0.5× bentazon plus acifluorfen.


2011 ◽  
Vol 25 (3) ◽  
pp. 299-302 ◽  
Author(s):  
Martin M. Williams ◽  
Rick A. Boydston ◽  
R. Ed Peachey ◽  
Darren Robinson

Manufacturers of several POST corn herbicides recommend tank-mixing their herbicides with atrazine to improve performance; however, future regulatory changes may place greater restrictions on atrazine use and limit its availability to growers. Our research objectives were to quantify the effects of tank-mixing atrazine with tembotrione compared to tembotrione alone on (1) weed control, (2) variability in weed control, and (3) sweet corn yield components and yield variability. Field studies were conducted for 2 yr each in Illinois, Oregon, Washington, and Ontario, Canada. Tembotrione at 31 g ha−1 was applied alone and with atrazine at 370 g ha−1 POST at the four- to five-collar stage of corn. The predominant weed species observed in the experiment were common to corn production, including large crabgrass, wild-proso millet, common lambsquarters, and velvetleaf. For nearly every weed species and species group, the addition of atrazine improved tembotrione performance by increasing mean levels of weed control 3 to 45% at 2 wk after treatment. Adding atrazine reduced variation (i.e., standard deviation) in control of the weed community by 45%. Sweet corn ear number and ear mass were 9 and 13% higher, respectively, and less variable when atrazine was applied with tembotrione, compared to tembotrione alone. Additional restrictions or the complete loss of atrazine for use in corn will necessitate major changes in sweet corn weed management systems.


2011 ◽  
Vol 91 (5) ◽  
pp. 881-888 ◽  
Author(s):  
Nader Soltani ◽  
Robert Nurse ◽  
Christy Shropshire ◽  
Peter Sikkema

Soltani, N., Nurse, R. E., Shropshire, C. and Sikkema, P. H. 2011. Weed management in cranberry bean with linuron. Can. J. Plant Sci. 91: 881–888. Field studies were conducted at the Huron Research Station near Exeter, Ontario, in 2006 to 2009 to determine if the sequential application of trifluralin plus imazethapyr applied preplant incorporated (PPI) followed by linuron applied pre-emergence (PRE) at various doses can be used as an effective weed management strategy in cranberry bean production. There was minimal crop injury (6% or less) with various herbicides evaluated at 1 and 4 wk after emergence (WAE). Trifluralin plus imazethapyr applied PPI provided 97 to 100% control of common lambsquarters, 100% control of redroot pigweed, 99 to 100% control of wild mustard, 93 to 100% control of common ragweed, and 97 to 100% control of green foxtail. Linuron applied PRE provided 11 to 100% control of common lambsquarters, 90 to 100% control of redroot pigweed, 78 to 100% control of wild mustard, 71 to 100% control of common ragweed, and 20 to 100% control of green foxtail. The sequential application of trifluralin plus imazethapyr applied PPI followed by linuron applied PRE at various doses provided 100% control of common lambsquarters, 100% control of redroot pigweed, 100% control of wild mustard, 96 to 100% control of common ragweed, and 97 to 100% control of green foxtail. Weed density and shoot dry weight correlated well with the level of weed control. All of the herbicide treatments evaluated increased cranberry bean yield compared with the weedy control. Based on these results the sequential application of imazethapyr plus trifluralin applied PPI followed by linuron applied PRE at 1000 and 2500 g a.i. ha−1 provides a safe and efficacious weed management strategy in cranberry bean production.


1997 ◽  
Vol 11 (2) ◽  
pp. 324-328 ◽  
Author(s):  
John A. Ackley ◽  
Henry P. Wilson ◽  
Thomas E. Hines

In field studies in 1991, 1992, and 1993, rimsulfuron at 26 and 35 g ai/ha, sequentially at 26 g/ha, at 26 g/ha plus metribuzin at 280 g ai/ha, and metribuzin at 280 g/ha were evaluated POST for weed control in transplanted ‘Agriset’ tomato. Common lambsquarters was controlled by rimsulfuron at 35 g/ha. Rimsulfuron plus metribuzin gave consistent control of common ragweed, but jimsonweed control was inconsistent and goosegrass control was generally low. Rimsulfuron treatments caused slight (< 12%) temporary injury to new terminal growth of tomato. Yield of tomato fruit was consistently high in the metribuzin, metribuzin plus rimsulfuron, and rimsulfuron sequential treatments. In greenhouse studies, giant foxtail and large crabgrass control by rimsulfuron was above 95 and 85%, respectively, but goosegrass was not controlled. Height of four tomato cultivars was not reduced, but dry weight of ‘Floradade’ and ‘Sunbeam’ was reduced by rimsulfuron.


2004 ◽  
Vol 18 (4) ◽  
pp. 908-916 ◽  
Author(s):  
Peter H. Sikkema ◽  
Christy Shropshire ◽  
Allan S. Hamill ◽  
Susan E. Weaver ◽  
Paul B. Cavers

Field studies were conducted over 3 yr at two locations to evaluate the effect of glyphosate rate and time of application on common lambsquarters control, density, dry weight, seed production, and the number of seedlings emerging from soil cores taken the year after herbicide application in glyphosate-resistant corn. Glyphosate was applied at 0, 112, 225, 450, 675, or 900 g ai/ha when common lambsquarters were at the two-, four-, or six-leaf stage of growth. Nicosulfuron was applied to all experimental areas to control annual grasses. Visual estimates of percent control increased, whereas density, dry weight, seed production, and seedlings emerging the year after treatment decreased as the rate of glyphosate was increased from 0 to 450 g/ha. Increasing the glyphosate rate above 450 g/ha had little effect on these parameters. Corn yield declined only at glyphosate rates below 450 g/ha. Time of application had no effect on common lambsquarters control and corn yield because little emergence occurred after the first glyphosate application. There was no interaction between glyphosate rate and time of application for any of the parameters evaluated. In these studies, the application of glyphosate at half the manufacturer's registered rate provided control of common lambsquarters equivalent to the full-registered rate with no measured increase in weed seed production and no increase in weed seedlings emerging from soil cores the year after herbicide application. The results suggest that in some cases the use of reduced herbicide rates can provide excellent weed control and maintain crop yields, while reducing the cost of production and the environmental impact of herbicides. The use of extremely low rates (112 or 225 g/ha), however, resulted in reduced corn yields, increased common lambsquarters seed production and seedlings emerging the year after application, and possibly increased weed management costs in subsequent years.


Sign in / Sign up

Export Citation Format

Share Document