Weed control in soybean using pyroxasulfone and sulfentrazone

2015 ◽  
Vol 95 (6) ◽  
pp. 1199-1204 ◽  
Author(s):  
Kimberly D. Belfry ◽  
Kristen E. McNaughton ◽  
Peter H. Sikkema

Belfry, K. D., McNaughton, K. E. and Sikkema, P. H. 2015. Weed control in soybean using pyroxasulfone and sulfentrazone. Can. J. Plant Sci. 95: 1199–1204. Pyroxasulfone and sulfentrazone are new herbicides currently being evaluated for weed control in soybean [Glycine max (L.) Merr.] in Ontario, Canada. Seven experiments were conducted over a 3-yr period (2011 to 2013) at Ridgetown and Exeter, Ontario, to evaluate weed management using pyroxasulfone, sulfentrazone and their tank-mixes relative to the industry standard, imazethapyr plus metribuzin. Tank-mixing pyroxasulfone and sulfentrazone provided up to 97, 46, 60, 100 and 71% control of common lambsquarters (Chenopodium album L.), common ragweed (Ambrosia artemisiifolia L.), green foxtail [Setaria viridis (L.) Beauv.], Powell amaranth [Amaranthus powellii (S.) Wats.] and velvetleaf (Abutilon theophrasti Medic.), respectively, at 2 wk after treatment. Control with pyroxasulfone and sulfentrazone was improved when tank-mixed, relative to application of each herbicide separately. Although control was variable across weed species, no difference in control was identified between pyroxasulfone plus sulfentrazone and imazethapyr plus metribuzin. Soybean yield was up to 2.7, 2.4 and 2.9 t ha−1 for pyroxasulfone, sulfentrazone and pyroxasulfone plus sulfentrazone application, yet imazethapyr plus metribuzin provided the highest yield (3.3 t ha−1). This research demonstrates that pyroxasulfone plus sulfentrazone may be used as a valuable weed control option in soybean; however, weed community composition may limit herbicidal utility.

1999 ◽  
Vol 13 (3) ◽  
pp. 542-547 ◽  
Author(s):  
Brent E. Tharp ◽  
Oliver Schabenberger ◽  
James J. Kells

The recent introduction of glufosinate-resistant and glyphosate-resistant crops provides growers with new options for weed management. Information is needed to compare the effectiveness of glufosinate and glyphosate on annual weeds. Greenhouse trials were conducted to determine the response of barnyardgrass (Echinochloa crus-galli), common lambsquarters (Chenopodium album), common ragweed (Ambrosia artemisiifolia), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberi), large crabgrass (Digitaria sanguinalis), and velvetleaf (Abutilon theophrasti) to glufosinate and glyphosate. The response of velvetleaf and common lambsquarters was investigated at multiple stages of growth. Glufosinate and glyphosate were applied to each weed species at logarithmically incremented rates. The glufosinate and glyphosate rates that provided a 50% reduction in aboveground weed biomass, commonly referred to as GR50values, were compared using nonlinear regression techniques. Barnyardgrass, common ragweed, fall panicum, giant foxtail, and large crabgrass responded similarly to glufosinate and glyphosate. Common lambsquarters 4 to 8 cm in height was more sensitive to glufosinate than glyphosate. In contrast, 15- to 20-cm tall-velvetleaf was more sensitive to glyphosate than glufosinate.


1999 ◽  
Vol 13 (3) ◽  
pp. 471-477 ◽  
Author(s):  
Bryan G. Young ◽  
Stephen E. Hart ◽  
F. William Simmons

Field studies were conducted at Dekalb, Urbana, and Brownstown, IL, in 1996 and 1997 to evaluate corn (Zea mays) injury and weed control from preemergence applications of RPA 201772 alone and tank-mixed with metolachlor, atrazine, or both. No significant corn injury from RPA 201772 was observed at any time for all experiments. Giant foxtail (Setaria faberi) control at 60 days after treatment (DAT) was variable and ranged from 47 to 93% for RPA 201772 applied alone at 105 g ai/ ha. Giant foxtail control of at least 90% was observed by applying metolachlor at 1,120 g ai/ha with 105 g/ha RPA 201772. The addition of atrazine at either 1,120 or 1,680 g ai/ha improved control of giant foxtail compared with RPA 201772 applied alone at 105 g/ha in two of the six studies. RPA 201772 applied at 105 g/ha controlled at least 88% of velvetleaf (Abutilon theophrasti), Pennsylvania smartweed (Polygonum pensylvanicum), and smooth pigweed (Amaranthus hybridus). RPA 201772 controlled 88% or less of common waterhemp (Amaranthus rudis), common ragweed (Ambrosia artemisiifolia), and common cocklebur (Xanthium strumarium). Control of these three species was 92% or greater with RPA 201772 plus atrazine. Control of common lambsquarters (Chenopodium album) was at least 96% with RPA 201772 applied alone at any rate in four of the six studies. However, common lambsquarters control was 68 and 77% for RPA 201772 applied alone at 105 g/ha at Urbana and Brownstown in 1997, respectively, where high common lambsquarters densities were prevalent. Under these conditions, the addition of atrazine to RPA 201772 at 105 g/ha improved control of common lambsquarters. RPA 201772 has excellent potential to provide consistent control of velvetleaf compared with atrazine. In contrast, these studies indicate RPA 201772 may provide inconsistent control of certain weed species in different environments. In order to achieve consistent control of a broad spectrum of weed species, RPA 201772 must be combined with other herbicides.


2018 ◽  
Vol 10 (10) ◽  
pp. 32
Author(s):  
O. Adewale Osipitan ◽  
Jon E. Scott ◽  
Stevan Z. Knezevic

Tolpyralate, an HPPD (4-hydroxyphenyl-pyruvate dioxygenase) inhibitor, is a relatively new herbicide for weed control in corn. Field studies were conducted in 2015 and 2016 to evaluate the effective dose of tolpyralate applied alone or mixed with atrazine for weed control in corn. The treatments included seven rates (0, 5, 20, 29, 40, 50 and 100 g ai ha-1) of tolpyralate applied alone or mixed with a constant rate (560 g ai ha-1) of atrazine. The evaluated weed species were common waterhemp (Amaranthus rudis Sauer), common lambsquarters (Chenopodium album L.), velvetleaf (Abutilon theophrasti Medik), henbit (Lamium amplexicaule L.) and green foxtail (Setaria viridis L.). Overall, POST-application of tolpyralate resulted in 58-94% visual weed control when applied alone; whereas, addition of atrazine provided 71-100% control of same species. Calculated dose of 19-31 g ai ha-1 (ED90) of tolpyralate applied alone provided 90% visual control of waterhemp, lambsquaters, henbit, and velvetleaf. Whereas, addition of atrazine resulted in significantly lower dose of 11-17 g ai ha-1 for the same level of control, suggesting synergy between the two herbicides.


Weed Science ◽  
1974 ◽  
Vol 22 (2) ◽  
pp. 136-142 ◽  
Author(s):  
Robert N. Andersen ◽  
William E. Lueschen ◽  
Dennis D. Warnes ◽  
Wallace W. Nelson

In field studies, bentazon [3-isopropyl-1H-2,1,3-benzothiadiazin-(4)3H-one 2,2-dioxide] was applied as postemergence sprays over the top of weeds and soybeans[Glycine max(L.) Merr.]. Bentazon at 0.84 to 1.68 kg/ha applied as an early postemergence treatment controlled wild mustard[Brassica kaber(DC.) L.C. Wheeler var.pinnatifida(Stokes) L.C. Wheeler], common ragweed (Ambrosia artemisiifoliaL.), velvetleaf (Abutilon theophrastiMedic.), Pennsylvania smartweed, (Polygonum pensylvanicumL.), common cocklebur (Xanthium pensylvanicumWallr.), and wild common sunflower (Helianthus annuusL.). Pigweeds (Amaranthussp.) were controlled by applications in the three true-leaf stage but became more resistant at later stages. Control of common lambsquarters (Chenopodium albumL.) was erratic. The optimum time for controlling weeds with bentazon was around the first trifoliolate stage of soybeans. Rainfall within several hours after treatment reduced weed control. Eight yield studies, two of which included eight cultivars, were conducted on weed-free soybeans. In none were yields reduced significantly by bentazon at 3.36 kg/ha (the highest rate studied). Eight yield studies were conducted on soybeans infested with common cocklebur or velvetleaf. Weed control was generally excellent with 0.84 kg/ha of bentazon. Where infestations were sufficient to reduce yields, bentazon treatments increased the yields to levels generally comparable with those of the handweeded checks. One exception was an application of bentazon to soybeans growing in a low area that was periodically flooded by heavy rains. In that experiment the benefit of controlling common cocklebur was offset by bentazon injury to the soybeans, and yields from the treated plots were about the same as those of the weedy check.


2018 ◽  
Vol 32 (6) ◽  
pp. 698-706 ◽  
Author(s):  
Brendan A. Metzger ◽  
Nader Soltani ◽  
Alan J. Raeder ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractTolpyralate is a new 4-hydroxyphenyl-pyruvate dioxygenase (HPPD)-inhibiting herbicide for POST weed management in corn; however, there is limited information regarding its efficacy. Six field studies were conducted in Ontario, Canada, over 3 yr (2015 to 2017) to determine the biologically effective dose of tolpyralate for the control of eight annual weed species. Tolpyralate was applied POST at six doses from 3.75 to 120 g ai ha−1and tank mixed at a 1:33.3 ratio with atrazine at six doses from 125 to 4,000 g ha−1. Regression analysis was performed to determine the effective dose (ED) of tolpyralate, and tolpyralate+atrazine, required to achieve 50%, 80%, or 90% control of eight weed species at 1, 2, 4, and 8 wk after application (WAA). The ED of tolpyralate for 90% control (ED90) of velvetleaf, common lambsquarters, common ragweed, redroot pigweed or Powell amaranth, and green foxtail at 8 WAA was ≤15.5 g ha−1; however, tolpyralate alone did not provide 90% control of wild mustard, barnyardgrass, or ladysthumb at 8 WAA at any dose evaluated in this study. In contrast, the ED90for all species in this study with tolpyralate+atrazine was ≤13.1+436 g ha−1, indicating that tolpyralate+atrazine can be highly efficacious at low field doses.


Weed Science ◽  
2019 ◽  
Vol 67 (05) ◽  
pp. 485-496
Author(s):  
Andrea Smith ◽  
Nader Soltani ◽  
Allan C. Kaastra ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractHerbicide-resistant weeds are a growing concern globally; in response, new herbicide resistance traits are being inserted into crops. Isoxaflutole-resistant soybean [Glycine max (L.) Merr.] will provide a new mode of action for use in this crop. Ten experiments were conducted over a 2-yr period (2017, 2018) to determine herbicide interactions between isoxaflutole and metribuzin on soybean injury, weed control efficacy, and soybean yield on a range of soil types. Soybean leaf-bleaching injury caused by isoxaflutole was most severe at sites with higher levels of rainfall after application. Control of weed species with isoxaflutole (52.5, 79, and 105 g ai ha−1) and metribuzin (210, 315, and 420 g ai ha−1) differed by site based on amount of rainfall after application. At sites where there was sufficient rainfall for herbicide activation, isoxaflutole at all rates controlled common lambsquarters (Chenopodium album L.), Amaranthus spp., common ragweed (Ambrosia artemisiifolia L.), and velvetleaf (Abutilon theophrasti Medik.) >90%; metribuzin at all rates controlled Amaranthus spp. and witchgrass (Panicum capillare L.) >80%. Control of every weed species evaluated was reduced when there was limited rainfall after herbicide application. The co-application of isoxaflutole + metribuzin resulted in additive or synergistic interactions for the control of C. album, Amaranthus spp., A. artemisiifolia, A. theophrasti, Setaria spp., barnyardgrass [Echinochloa crus-galli (L.) P. Beauv], and P. capillare. Isoxaflutole and metribuzin can be an effective management strategy for common annual broadleaf and grass weeds in Ontario if timely rainfall events occur after herbicide application.


2018 ◽  
Vol 32 (6) ◽  
pp. 707-713 ◽  
Author(s):  
Brendan A. Metzger ◽  
Nader Soltani ◽  
Alan J. Raeder ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractTolpyralate is a new Group 27 pyrazolone herbicide that inhibits the 4-hydroxyphenyl-pyruvate dioxygenase enzyme. In a study of the biologically effective dose of tolpyralate from 2015 to 2017 in Ontario, Canada, tolpyralate exhibited efficacy on a broader range of species when co-applied with atrazine; however, there is limited published information on the efficacy of tolpyralate and tolpyralate+atrazine relative to mesotrione and topramezone, applied POST with atrazine at label rates, for control of annual grass and broadleaf weeds. In this study, tolpyralate applied alone at 30 g ai ha−1 provided >90% control of common lambsquarters, velvetleaf, common ragweed, Powell amaranth/redroot pigweed, and green foxtail at 8 weeks after application (WAA). Addition of atrazine was required to achieve >90% control of wild mustard, ladysthumb, and barnyardgrass at 8 WAA. Tolpyralate+atrazine (30+1,000 g ai ha−1) and topramezone+atrazine (12.5+500 g ai ha−1) provided similar control at 8 WAA of the eight weed species in this study; however, tolpyralate+atrazine provided >90% control of green foxtail by 1 WAA. Tolpyralate+atrazine provided 18, 68, and 67 percentage points better control of common ragweed, green foxtail, and barnyardgrass, respectively, than mesotrione+atrazine (100+280 g ai ha−1) at 8 WAA. Overall, tolpyralate+atrazine applied POST provided equivalent or improved control of annual grass and broadleaf weeds compared with mesotrione+atrazine and topramezone+atrazine.


HortScience ◽  
2008 ◽  
Vol 43 (5) ◽  
pp. 1492-1494 ◽  
Author(s):  
Darren E. Robinson ◽  
Kristen McNaughton ◽  
Nader Soltani

Pepper growers currently have limited access to many effective broadleaf herbicides. Field trials were conducted over a 3-year period in Ontario to study the effect of tank mixtures of sulfentrazone (100 or 200 g·ha−1 a.i.) with either s-metolachlor (1200 or 2400 g·ha−1 a.i.) or dimethenamid-p (750 or 1500 g·ha−1 a.i.) on transplanted bell pepper. Under weed-free conditions, there was no visual injury or reduction in plant height, fruit number, fruit size, or marketable yield of transplanted pepper with pretransplant applications of sulfentrazone applied in tank mixtures with s-metolachlor or dimethenamid-p. The tank mixture of sulfentrazone + s-metolachlor gave greater than 85% control of redroot pigweed (Amaranthus retroflexus) and eastern black nightshade (Solanum ptycanthum), but only 70% to 76% control of velvetleaf (Abutilon theophrasti), common ragweed (Ambrosia artemisiifolia), and common lambsquarters (Chenopodium album). The combination of sulfentrazone + dimethenamid-p provided good to excellent control of all weed species except velvetleaf. Based on this study, sulfentrazone and dimethenamid-p have potential for minor use registration in pepper.


2019 ◽  
Vol 33 (03) ◽  
pp. 448-458 ◽  
Author(s):  
Brendan A. Metzger ◽  
Nader Soltani ◽  
Alan J. Raeder ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractEffective POST herbicides and herbicide mixtures are key components of integrated weed management in corn; however, herbicides vary in their efficacy based on application timing. Six field experiments were conducted over 2 yr (2017–2018) in southwestern Ontario, Canada, to determine the effects of herbicide application timing and rate on the efficacy of tolpyralate, a new 4-hydroxyphenyl pyruvate dioxygenase inhibitor. Tolpyralate at 15, 30, or 40 g ai ha−1 in combination with atrazine at 500 or 1,000 g ai ha−1 was applied PRE, early POST, mid-POST, or late POST. Tolpyralate + atrazine at rates ≥30 + 1,000 g ha−1 provided equivalent control of common lambsquarters and Powell amaranth applied PRE or POST, whereas no rate applied PRE controlled common ragweed, velvetleaf, barnyardgrass, or green foxtail. Common ragweed, common lambsquarters, velvetleaf, and Powell amaranth were controlled equally regardless of POST timing. In contrast, control of barnyardgrass and green foxtail declined when herbicide application was delayed to the late-POST timing, irrespective of herbicide rate. Similarly, corn grain yield declined within each tolpyralate + atrazine rate when herbicide applications were delayed to late-POST timing. Overall, the results of this study indicate that several monocot and dicot weed species can be controlled with tolpyralate + atrazine with an early to mid-POST herbicide application timing, before weeds reach 30 cm in height, and Powell amaranth and common lambsquarters can also be controlled PRE. Additionally, this study provides further evidence highlighting the importance of effective, early-season weed control in corn.


Weed Science ◽  
1970 ◽  
Vol 18 (2) ◽  
pp. 206-214 ◽  
Author(s):  
R. P. Upchurch ◽  
F. L. Selman ◽  
H. L. Webster

Relatively pure stands of eight weed species were maintained under field conditions on a Goldsboro loamy sand at Lewiston, North Carolina, for all or part of a 6-year period. Herbicides evaluated as preemergence surface treatments for these species were 2-sec-butyl-4,6-dinitrophenol (dinoseb), isopropyl m-chlorocarbanilate (chloropropham), 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea (diuron), 2-chloro-4,6-bis(ethylamino)-s-triazine (simazine), and 3-amino-2,5-dichlorobenzoic acid (amiben). S-ethyl dipropylthiocarbamate (EPTC) and a,a,a-trifluro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin) were evaluated as preemergence incorporated treatments. The first four herbicides were evaluated in 1961, 1964, and 1966 while the last three were evaluated in 1962, 1963, and 1965. A series of rates was used for each chemical with three replications. With the exception of diuron which failed to control goosegrass (Eleusine indica (L.) Gaertn.), all of the herbicides provided at least a moderate degree of control of goosegrass, smooth crabgrass (Digitaria ischaemum (Schreb.) Muhl.), and redroot pigweed (Amaranthus retroflexus L.) at the respective typical field use rates. In general, trifluralin and amiben gave the best grass control and dinoseb the poorest. None of the herbicides effectively controlled common cocklebur (Xanthium pensylvanicum Wallr.) or ivyleaf morningglory (Ipomoea hederacea (L.) Jacq.). Trifluralin and EPTC did not control Pennsylvania smartweed (Polygonum pensylvanicum L.), common ragweed (Ambrosia artemisiifolia L.), and common lambsquarters (Chenopodium album L.). Chloropropham was ineffective on common ragweed. Simazine, chloropropham, and amiben controlled Pennsylvania smartweed while diuron, simazine, dinoseb, and amiben were especially effective on common lambsquarters. Distinctive patterns of nematode infestations were observed as a function of weed species.


Sign in / Sign up

Export Citation Format

Share Document