Function-based, biologically inspired concept generation

Author(s):  
Jacquelyn K.S. Nagel ◽  
Robert L. Nagel ◽  
Robert B. Stone ◽  
Daniel A. McAdams

AbstractThe natural world provides numerous cases for inspiration in engineering design. Biological organisms, phenomena, and strategies, which we refer to as biological systems, provide a rich set of analogies. These systems provide insight into sustainable and adaptable design and offer engineers billions of years of valuable experience, which can be used to inspire engineering innovation. This research presents a general method for functionally representing biological systems through systematic design techniques, leading to the conceptualization of biologically inspired engineering designs. Functional representation and abstraction techniques are used to translate biological systems into an engineering context. The goal is to make the biological information accessible to engineering designers who possess varying levels of biological knowledge but have a common understanding of engineering design. Creative or novel engineering designs may then be discovered through connections made between biology and engineering. To assist with making connections between the two domains concept generation techniques that use biological information, engineering knowledge, and automatic concept generation software are employed. Two concept generation approaches are presented that use a biological model to discover corresponding engineering components that mimic the biological system and use a repository of engineering and biological information to discover which biological components inspire functional solutions to fulfill engineering requirements. Discussion includes general guidelines for modeling biological systems at varying levels of fidelity, advantages, limitations, and applications of this research. The modeling methodology and the first approach for concept generation are illustrated by a continuous example of lichen.

Author(s):  
Jacquelyn K. S. Nagel ◽  
Robert B. Stone

To facilitate systematic biologically-inspired design, a design methodology that integrates with function-based design methodologies has been formalized. The goals of this methodology are to go beyond the element of chance, reduce the amount of time and effort required for developing biologically-inspired engineering solutions, and bridge the seemingly immense disconnect between the engineering and biological domains. Using functional representation and abstraction to describe biological systems presents the natural designs in an engineering context and allows designers to make connections between biological and engineered systems. Thus, the biological information is accessible to engineering designers with varying biological knowledge, but a common understanding of engineering design methodologies. Two approaches to validation are presented. One examines current biologically-inspired products either in production or in literature to see if the systematic approach to biologically-inspired design can reproduce the existing designs. The second investigates needs-based design problems that lead to plausible biologically-inspired solutions. This work has demonstrated the feasibility of using systematic design for the discovery of innovative engineering designs without requiring expert-level knowledge, but rather broad knowledge of many fields.


Author(s):  
Jacquelyn K. S. Nagel ◽  
Robert B. Stone ◽  
Daniel A. McAdams

Engineering design is considered a creative field that involves many activities with the end goal of a new product that fulfills a purpose. Utilization of systematic methods or tools that aid in the design process is recognized as standard practice in industry and academia. The tools are used for a number of design activities (i.e., idea generation, concept generation, inspiration searches, functional modeling) and can span across engineering disciplines, the sciences (i.e., biology, chemistry) or a non-engineering domain (i.e., medicine), with an overall focus of encouraging creative engineering designs. Engineers, however, have struggled with utilizing the vast amount of biological information available from the natural world around them. Often it is because there is a knowledge gap or terminology is difficult, and the time needed to learn and understand the biology is not feasible. This paper presents an engineering-to-biology thesaurus, which we propose affords engineers, with limited biological background, a tool for leveraging nature’s ingenuity during many steps of the design process. Additionally, the tool could also increase the probability of designing biologically-inspired engineering solutions. Biological terms in the thesaurus are correlated to the engineering domain through pairing with a synonymous function or flow term of the Functional Basis lexicon, which supports functional modeling and abstract representation of any functioning system. The second version of the thesaurus presented in this paper represents an integration of three independent research efforts, which include research from Oregon State University, the University of Toronto, and the Indian Institute of Science, and their industrial partners. The overall approach for term integration and the final results are presented. Applications to the areas of design inspiration, comprehension of biological information, functional modeling, creative design and concept generation are discussed. An example of comprehension and functional modeling are presented.


Author(s):  
Jacquelyn K. S. Nagel ◽  
Robert B. Stone ◽  
Daniel A. McAdams

The natural world provides numerous cases for analogy and inspiration in engineering design. Biological organisms, phenomena and strategies, herein referred to as biological systems, are, in essence, living engineered systems. These living systems provide insight into sustainable and adaptable design and offer engineers billions of years of valuable experience, which can be used to inspire engineering innovation. This research presents a general method for functionally representing biological systems through systematic design techniques, affording conceptualization of biologically-inspired, engineering designs. Functional representation and abstraction techniques are utilized to translate biological systems into an engineering context. Thus, the biological system information is accessible to engineering designers with varying biological knowledge, but a common understanding of engineering design methods. Functional modeling is typically driven by customer needs or product re-designs; however, these cannot be applied to biological systems. Thus, we propose the use of biological category and scale to guide the design process. Mimicry categories and scales, in addition to answering a design question, aid the designer with defining boundaries or scope when developing a biological functional model. Biological category assists with framing the information in the right perspective, where as, biological scale deals with how much detail is required for an adequate representation of the biological system to utilize the information with a chosen engineering design method. In our case, the engineering design method is function-based design. Choosing a category serves to refine the boundary, but, like scale, its consideration might prompt the designer to consider the same biological system in a new and unique way leading to new ideas. General guidelines for modeling biological systems at varying scales and categories are given, along with two modeling examples.


Author(s):  
Michael Helms ◽  
Swaroop Vattam ◽  
Ashok Goel

Biologically inspired engineering design requires understanding of complex biological systems for use as analogues in engineering designs. In this study we seek to understand how functional representations, in particular Structure-Behavior-Function (SBF) models, enable understanding complex biological systems. Results from this study indicate that SBF representations may enable more accurate inferences about biological systems for complex and abstract questions than purely textual, or textual and diagrammatic, representations. They also suggest that no one representation is best for all types of inferences.


Author(s):  
Jacquelyn K. S. Nagel ◽  
Linda Schmidt ◽  
Werner Born

Nature is a powerful resource for engineering designers. The natural world provides numerous cases for analogy and inspiration in engineering design. Transferring the valuable knowledge and inspiration gained from the biology domain to the engineering domain during concept generation is a somewhat disorganized process and relies heavily on the designers’ insight and background knowledge of many fields to make the necessary leaps between the domains. Furthermore, the novice designer approaching biology for inspiration tends to focus heavily on copying the visual attributes of a biological system to develop a solution that looks like the biological system rather than explore at deeper levels to uncover relationships that lead to the development of true analogies. There are now well-known methods for teaching bioinspired design in engineering and the majority of methods prescribe the use of analogies in order to facilitate knowledge transfer, however, guidance in analogy formulation to foster the creative leaps is missing or ill defined. Thus little is known about how students use biological systems for design inspiration. This paper proposes categories for analogical knowledge transfer in bio-inspired design to foster and characterize diverse analogical knowledge transfer. The proposed analogy categories are used to describe the behavior seen in an engineering class. Results indicate that (1) single biological system provides multiple analogies that result in different engineering inspiration for design; (2) biological information from multiple categories is transferred during concept generation; and (3) non-physical characteristics may inspire more sophisticated engineering inspiration than those based on physical characteristics alone. Overall, the analogy data classification has resulted in a better understanding of analogical knowledge transfer during bio-inspired design and leads to best practices for teaching bio-inspired design to engineering students.


Author(s):  
Swaroop S. Vattam ◽  
Michael E. Helms ◽  
Ashok K. Goel

AbstractThe growing movement of biologically inspired design is driven in part by the need for sustainable development and in part by the recognition that nature could be a source of innovation. Biologically inspired design by definition entails cross-domain analogies from biological systems to problems in engineering and other design domains. However, the practice of biologically inspired design at present typically isad hoc, with little systemization of either biological knowledge for the purposes of engineering design or the processes of transferring knowledge of biological designs to engineering problems. In this paper we present an intricate episode of biologically inspired engineering design that unfolded over an extended period of time. We then analyze our observations in terms ofwhy,what,how, andwhenquestions of analogy. This analysis contributes toward a content theory of creative analogies in the context of biologically inspired design.


Author(s):  
Jacquelyn K. S. Nagel ◽  
Robert L. Nagel ◽  
Marjan Eggermont

This paper presents research on the use of an engineering-to-biology thesaurus in an engineering classroom as an aid to teaching biomimicry. The leap from engineering to biological science has posed a challenge. Engineers often struggle with how to best use the vast amount of biological information available from the natural world around them. Often there is a knowledge gap, and terminology takes different meanings. Generally, the time required to learn and become fluent in biology poses too large a hurdle. The engineering-to-biology thesaurus was designed to allow engineers without advanced biological knowledge to leverage nature’s ingenuity during engineering design. The three key goals of this thesaurus are to (1) lessen the burden when working with knowledge from the biological domain by providing a link between engineering and biological terminology; (2) assist designers with establishing connections between the two domains; and (3) to facilitate biologically-inspired design. In this paper, the results of a pilot study as well as a second study are presented. The pilot study was used to craft instructional materials involving the engineering-to-biology thesaurus. In the second study, sophomore engineering students enrolled in a design course were given a design task to complete using the thesaurus. The task focused on biomimetic concept development for their course project — designing a human-powered vehicle for a person with cerebral palsy. Results of the design task are presented.


Author(s):  
Jacquelyn K.S. Nagel ◽  
Robert B. Stone

AbstractThe natural world provides numerous cases for analogy and inspiration in engineering design. During the early stages of design, particularly during concept generation when several variants are created, biological systems can be used to inspire innovative solutions to a design problem. However, identifying and presenting the valuable knowledge from the biological domain to an engineering designer during concept generation is currently a somewhat disorganized process or requires extensive knowledge of the biological system. To circumvent the knowledge requirement problem, we developed a computational approach for discovering biological inspiration during the early stages of design that integrates with established function-based design methods. This research defines and formalizes the information identification and knowledge transfer processes that enable systematic development of biologically inspired designs. The framework that supports our computational design approach is provided along with an example of a smart flooring device to demonstrate the approach. Biologically inspired conceptual designs are presented and validated through a literature search and comparison to existing products.


Author(s):  
Swaroop S. Vattam ◽  
Michael Helms ◽  
Ashok K. Goel

Biologically inspired engineering design is an approach to design that espouses the adaptation of functions and mechanisms in biological sciences to solve engineering design problems. We have conducted an in situ study of designers engaged in biologically inspired design. Based on this study we develop here a macrocognitive information-processing model of biologically inspired design. We also compare and contrast the model with other information-processing models of analogical design such as TRIZ, case-based design, and design patterns.


Sign in / Sign up

Export Citation Format

Share Document