A Systematic Approach to Biologically-Inspired Engineering Design

Author(s):  
Jacquelyn K. S. Nagel ◽  
Robert B. Stone

To facilitate systematic biologically-inspired design, a design methodology that integrates with function-based design methodologies has been formalized. The goals of this methodology are to go beyond the element of chance, reduce the amount of time and effort required for developing biologically-inspired engineering solutions, and bridge the seemingly immense disconnect between the engineering and biological domains. Using functional representation and abstraction to describe biological systems presents the natural designs in an engineering context and allows designers to make connections between biological and engineered systems. Thus, the biological information is accessible to engineering designers with varying biological knowledge, but a common understanding of engineering design methodologies. Two approaches to validation are presented. One examines current biologically-inspired products either in production or in literature to see if the systematic approach to biologically-inspired design can reproduce the existing designs. The second investigates needs-based design problems that lead to plausible biologically-inspired solutions. This work has demonstrated the feasibility of using systematic design for the discovery of innovative engineering designs without requiring expert-level knowledge, but rather broad knowledge of many fields.

Author(s):  
Jacquelyn K.S. Nagel ◽  
Robert L. Nagel ◽  
Robert B. Stone ◽  
Daniel A. McAdams

AbstractThe natural world provides numerous cases for inspiration in engineering design. Biological organisms, phenomena, and strategies, which we refer to as biological systems, provide a rich set of analogies. These systems provide insight into sustainable and adaptable design and offer engineers billions of years of valuable experience, which can be used to inspire engineering innovation. This research presents a general method for functionally representing biological systems through systematic design techniques, leading to the conceptualization of biologically inspired engineering designs. Functional representation and abstraction techniques are used to translate biological systems into an engineering context. The goal is to make the biological information accessible to engineering designers who possess varying levels of biological knowledge but have a common understanding of engineering design. Creative or novel engineering designs may then be discovered through connections made between biology and engineering. To assist with making connections between the two domains concept generation techniques that use biological information, engineering knowledge, and automatic concept generation software are employed. Two concept generation approaches are presented that use a biological model to discover corresponding engineering components that mimic the biological system and use a repository of engineering and biological information to discover which biological components inspire functional solutions to fulfill engineering requirements. Discussion includes general guidelines for modeling biological systems at varying levels of fidelity, advantages, limitations, and applications of this research. The modeling methodology and the first approach for concept generation are illustrated by a continuous example of lichen.


Author(s):  
Swaroop S. Vattam ◽  
Michael E. Helms ◽  
Ashok K. Goel

AbstractThe growing movement of biologically inspired design is driven in part by the need for sustainable development and in part by the recognition that nature could be a source of innovation. Biologically inspired design by definition entails cross-domain analogies from biological systems to problems in engineering and other design domains. However, the practice of biologically inspired design at present typically isad hoc, with little systemization of either biological knowledge for the purposes of engineering design or the processes of transferring knowledge of biological designs to engineering problems. In this paper we present an intricate episode of biologically inspired engineering design that unfolded over an extended period of time. We then analyze our observations in terms ofwhy,what,how, andwhenquestions of analogy. This analysis contributes toward a content theory of creative analogies in the context of biologically inspired design.


Author(s):  
Swaroop S. Vattam ◽  
Michael Helms ◽  
Ashok K. Goel

Biologically inspired engineering design is an approach to design that espouses the adaptation of functions and mechanisms in biological sciences to solve engineering design problems. We have conducted an in situ study of designers engaged in biologically inspired design. Based on this study we develop here a macrocognitive information-processing model of biologically inspired design. We also compare and contrast the model with other information-processing models of analogical design such as TRIZ, case-based design, and design patterns.


Author(s):  
Jacquelyn K. S. Nagel ◽  
Robert B. Stone ◽  
Daniel A. McAdams

Engineering design is considered a creative field that involves many activities with the end goal of a new product that fulfills a purpose. Utilization of systematic methods or tools that aid in the design process is recognized as standard practice in industry and academia. The tools are used for a number of design activities (i.e., idea generation, concept generation, inspiration searches, functional modeling) and can span across engineering disciplines, the sciences (i.e., biology, chemistry) or a non-engineering domain (i.e., medicine), with an overall focus of encouraging creative engineering designs. Engineers, however, have struggled with utilizing the vast amount of biological information available from the natural world around them. Often it is because there is a knowledge gap or terminology is difficult, and the time needed to learn and understand the biology is not feasible. This paper presents an engineering-to-biology thesaurus, which we propose affords engineers, with limited biological background, a tool for leveraging nature’s ingenuity during many steps of the design process. Additionally, the tool could also increase the probability of designing biologically-inspired engineering solutions. Biological terms in the thesaurus are correlated to the engineering domain through pairing with a synonymous function or flow term of the Functional Basis lexicon, which supports functional modeling and abstract representation of any functioning system. The second version of the thesaurus presented in this paper represents an integration of three independent research efforts, which include research from Oregon State University, the University of Toronto, and the Indian Institute of Science, and their industrial partners. The overall approach for term integration and the final results are presented. Applications to the areas of design inspiration, comprehension of biological information, functional modeling, creative design and concept generation are discussed. An example of comprehension and functional modeling are presented.


Author(s):  
Dennis Vandevenne ◽  
Paul-Armand Verhaegen ◽  
Simon Dewulf ◽  
Joost R. Duflou

AbstractThis paper presents a bioinspiration approach that is able to scalably leverage the ever-growing body of biological information in natural-language format. The ideation tool AskNature, developed by the Biomimicry 3.8 Institute, is expanded with an algorithm for automated classification of biological strategies into the Biomimicry Taxonomy, a three-level, hierarchical information structure that organizes AskNature's database. In this way, the manual work entailed by the classification of biological strategies can be alleviated. Thus, the bottleneck is removed that currently prevents the integration of large numbers of biological strategies. To demonstrate the feasibility of building a scalable bioideation system, this paper presents tests that classify biological strategies from AskNature's reference database for those Biomimicry Taxonomy classes that currently hold sufficient reference documents.


Author(s):  
Amanda Chou ◽  
L.H. Shu

AbstractWe aim to examine the potential of using analogies in design education and to compare the roles of analogies in explaining versus inspiring in engineering design. We review existing research in analogical thinking, with a focus on scientific discourse and education. Then we explore the role of analogies in design education in making concepts more relatable by asking six participants in a graduate-level design course to generate analogies for course topics. We describe criteria developed to evaluate the analogies and present these evaluations. We then asked participants to perform divergent thinking tests, but we found no significant correlation between these and analogy scores. The participants were also asked to reflect on what constitutes an effective analog, describe their process of identifying analogies, and provide their definitions of analogies. We describe possible links between these comments and the ratings of their analogies. We then draw on results in using analogies in pedagogy to inform and reflect on obstacles we encountered in the use of analogies to inspire. Specifically, we related them to our experience with biomimetic or biologically inspired design, where we used a natural-language search approach to identify relevant analogies. Three aspects discussed are familiarity of source analogies, boundaries of parallels between source analogies and target concepts, and concreteness of source analogies. Finally, we discuss possible pedagogical benefits of eliciting analogies on course topics from students, namely, using the elicited analogies as tools for improved student engagement as well as more prompt instructor feedback.


Author(s):  
Jacquelyn K. S. Nagel ◽  
Robert L. Nagel ◽  
Marjan Eggermont

This paper presents research on the use of an engineering-to-biology thesaurus in an engineering classroom as an aid to teaching biomimicry. The leap from engineering to biological science has posed a challenge. Engineers often struggle with how to best use the vast amount of biological information available from the natural world around them. Often there is a knowledge gap, and terminology takes different meanings. Generally, the time required to learn and become fluent in biology poses too large a hurdle. The engineering-to-biology thesaurus was designed to allow engineers without advanced biological knowledge to leverage nature’s ingenuity during engineering design. The three key goals of this thesaurus are to (1) lessen the burden when working with knowledge from the biological domain by providing a link between engineering and biological terminology; (2) assist designers with establishing connections between the two domains; and (3) to facilitate biologically-inspired design. In this paper, the results of a pilot study as well as a second study are presented. The pilot study was used to craft instructional materials involving the engineering-to-biology thesaurus. In the second study, sophomore engineering students enrolled in a design course were given a design task to complete using the thesaurus. The task focused on biomimetic concept development for their course project — designing a human-powered vehicle for a person with cerebral palsy. Results of the design task are presented.


Author(s):  
Jacquelyn K. S. Nagel ◽  
Robert B. Stone ◽  
Daniel A. McAdams

The natural world provides numerous cases for analogy and inspiration in engineering design. Biological organisms, phenomena and strategies, herein referred to as biological systems, are, in essence, living engineered systems. These living systems provide insight into sustainable and adaptable design and offer engineers billions of years of valuable experience, which can be used to inspire engineering innovation. This research presents a general method for functionally representing biological systems through systematic design techniques, affording conceptualization of biologically-inspired, engineering designs. Functional representation and abstraction techniques are utilized to translate biological systems into an engineering context. Thus, the biological system information is accessible to engineering designers with varying biological knowledge, but a common understanding of engineering design methods. Functional modeling is typically driven by customer needs or product re-designs; however, these cannot be applied to biological systems. Thus, we propose the use of biological category and scale to guide the design process. Mimicry categories and scales, in addition to answering a design question, aid the designer with defining boundaries or scope when developing a biological functional model. Biological category assists with framing the information in the right perspective, where as, biological scale deals with how much detail is required for an adequate representation of the biological system to utilize the information with a chosen engineering design method. In our case, the engineering design method is function-based design. Choosing a category serves to refine the boundary, but, like scale, its consideration might prompt the designer to consider the same biological system in a new and unique way leading to new ideas. General guidelines for modeling biological systems at varying scales and categories are given, along with two modeling examples.


Author(s):  
Justin Seipel

Biologically-inspired design is challenging because it requires creative transfer across biological and engineering disciplines. The biologically-inspired design process could therefore be improved with new tools, methods, and pedagogy that enables a smooth transition from a biological example or concept to a conceptual engineering design based on existing engineering components and practices. Two important problems can arise immediately when an engineer or student attempts bioinspired design: I. The practitioner or student of biological inspiration or biomimicry may not understand what the biological mechanism is that underlies a particular function of interest, and may begin engineering conceptual design with a misunderstanding of the essential mechanism required. II. Even when the correct biological mechanism is identified and a conceptual biological model is developed prior to engineering design, it may remain difficult to transition from a biological conceptual model of mechanism to an engineering conceptual design because the way these systems are composed and manufactured can be entirely different. For these reasons a formal process is developed here that links biological science with engineering design: where a biological mechanism of interest is first abstracted to a mechanistic conceptual model that focuses on the scope of the function of interest and removes other levels of biological detail. This results in a physiologically-independent conceptual model that links biological and engineering concepts. Then, subsequently, this inter-disciplinary conceptual model is re-embodied as an engineering design concept utilizing the current state of engineering art, available engineering components, and best practices. An example is presented of an existing class of biologically-inspired legged robots and their relationship to an abstract mathematical model of whole-body animal locomotion. Also, a teaching method is proposed for model-based biologically-inspired engineering design.


Author(s):  
Michael Helms ◽  
Swaroop Vattam ◽  
Ashok Goel

Biologically inspired engineering design requires understanding of complex biological systems for use as analogues in engineering designs. In this study we seek to understand how functional representations, in particular Structure-Behavior-Function (SBF) models, enable understanding complex biological systems. Results from this study indicate that SBF representations may enable more accurate inferences about biological systems for complex and abstract questions than purely textual, or textual and diagrammatic, representations. They also suggest that no one representation is best for all types of inferences.


Sign in / Sign up

Export Citation Format

Share Document