scholarly journals The maintained discharge of rat retinal ganglion cells

2008 ◽  
Vol 25 (4) ◽  
pp. 535-548 ◽  
Author(s):  
DANIEL K. FREEMAN ◽  
WALTER F. HEINE ◽  
CHRISTOPHER L. PASSAGLIA

AbstractAction potentials were recorded from rat retinal ganglion cell fibers in the presence of a uniform field, and the maintained discharge pattern was characterized. Spike trains recorded under ketamine–xylazine anesthesia were generally stationary, while those recorded under urethane anesthesia often showed slow, undriven, quasiperiodic fluctuations in firing rate. In light of these nonstationarities, interspike interval distributions and power spectral densities are reported for data collected primarily under ketamine–xylazine. The majority of cells had multimodal interval distributions, with the first peak in the range of 25.0–38.5 ms and the subsequent peaks occurring at integer multiples of the first peak. Cells with unimodal distributions were fit well by a gamma distribution function. Interval and spike count statistics showed that ON cells tended to fire faster than OFF cells and that cells with higher rates fired in a more regular manner, with the coefficient of variation covering a wide range of values across all cells (0.43–0.97). Both ON and OFF cells show serial correlations between adjacent interspike intervals, while ON cells also showed second-order correlations. Cells with multimodal interval distribution showed a strong peak at high frequencies in the power spectra in the range of 28.9–41.4 Hz. Oscillations were present under both anesthetic conditions and persisted in the dark at a slightly lower frequency, implying that the oscillations are generated independent of any light stimulus but can be modulated by light level. The oscillation frequency varied slightly between cells of the same type and in the same eye, suggesting that multiple oscillatory generating mechanisms exist within the retina. Cells with high-frequency oscillations were described well by an integrate-and-fire model with the input consisting of Gaussian noise plus a sinusoid where the phase was jittered randomly to account for the bandwidth present in the oscillations.

2020 ◽  
Author(s):  
Jared N. Levine ◽  
Gregory W. Schwartz

AbstractIn the mouse, retinal output is computed by over 40 distinct types of retinal ganglion cells (RGCs) (Baden et al., 2016). Determining which of these many RGC types project to a retinorecipient region is a key step in elucidating the role that region plays in visually-mediated behaviors. Combining retrograde viral tracing and single-cell electrophysiology, we identify the RGC types which project to the olivary pretectal nucleus (OPN), a major visual structure. We find that retinal input to the OPN consists of a variety of intrinsically-photosensitive and conventional RGC types, the latter a diverse set of mostly ON RGCs. Surprisingly, while the OPN is most associated with the pupillary light reflex (PLR) pathway, requiring information about absolute luminance, we show that the majority of the retinal input to the OPN is from single cell type which transmits information unrelated to luminance. This ON-transient RGC accounts for two-thirds of the input to the OPN, and responds to small objects across a wide range of speeds. This finding suggests a role for the OPN in visually-mediated behaviors beyond the PLR.Significance statementThe olivary pretectal nucleus is a midbrain structure which receives direct input from retinal ganglion cells (RGC), and modulates pupil diameter in response to changing absolute light level. In the present study, we combine viral tracing and electrophysiology to identify the RGC types which project to the OPN. Surprisingly, the majority of its input comes from a single type which does not encode absolute luminance, but instead responds to small objects across a wide range of speeds. These findings are consistent with a role for the OPN apart from pupil control and suggest future experiments to elucidate its full role in visually-mediated behavior.


2020 ◽  
Author(s):  
Rubén Herzog ◽  
Arturo Morales ◽  
Soraya Mora ◽  
Joaquin Araya ◽  
María-José Escobar ◽  
...  

AbstractWe propose a novel, scalable, and accurate automated method for detecting neuronal ensembles from a population of spiking neurons. Our approach offers a simple yet powerful tool to study ensemble activity. It allows the participation of neurons in different ensembles, has few parameters to tune and is computationally efficient. We used spike trains of retinal ganglion cells obtained from multi-electrode array recordings under a simple ON-OFF light stimulus to test our method. We found a consistent stimuli-evoked ensemble activity intermingled with spontaneously active ensembles and irregular activity. Our results suggest that the early visual system activity is already organized in clearly distinguishable functional ensembles. To validate the performance and generality of our method, we generated synthetic data, where we found that our method accurately detects neuronal ensembles for a wide range of simulation parameters. Additionally, we found that our method outperforms current alternative methodologies. Finally, we provide a Graphic User Interface, which aims to facilitate our method’s use by the scientific community.Author summaryNeuronal ensembles are strongly interconnected groups of neurons that tend to fire together (Hebb 1949). However, even when this concept was proposed more than 70 years ago, only recent advances in multi-electrode arrays and calcium imaging, statistical methods, and computing power have made it possible to record and analyze multiple neurons’ activities spiking simultaneously, providing a unique opportunity to study how groups of neurons form ensembles spontaneously and under different stimuli scenarios. Using our method, we found that retinal ganglion cells show a consistent stimuli-evoked ensemble activity, and, when validated with synthetic data, the method shows good performance by detecting the number of ensembles, the activation times, and the core-cells for a wide range of firing rates and number of ensembles accurately.


2020 ◽  
pp. 9-24
Author(s):  
Peter Bodrogi ◽  
Xue Guo ◽  
Tran Quoc Khanh

The brightness perception of a large (41°) uniform visual field was investigated in a visual psychophysical experiment. Subjects assessed the brightness of 20 light source spectra of different chromaticities at two luminance levels, Lv=267.6 cd/m2 and Lv=24.8 cd/m2. The resulting mean subjective brightness scale values were modelled by a combination of the signals of retinal mechanisms: S-cones, rods, intrinsically photosensitive retinal ganglion cells (ipRGCs) and the difference of the L-cone signal and the M-cone signal. A new quantity, “relative spectral blue content”, was also considered for modelling. This quantity was defined as “the spectral radiance of the light stimulus integrated with the range (380–520) nm, relative to luminance”. The “relative spectral blue content” model could describe the subjective brightness perception of the observers with reasonable accuracy.


1990 ◽  
Vol 4 (1) ◽  
pp. 75-93 ◽  
Author(s):  
Keith Purpura ◽  
Daniel Tranchina ◽  
Ehud Kaplan ◽  
Robert M. Shapley

AbstractThe responses of monkey retinal ganglion cells to sinusoidal stimuli of various temporal frequencies were measured and analyzed at a number of mean light levels. Temporal modulation tuning functions (TMTFs) were measured at each mean level by varying the drift rate of a sine-wave grating of fixed spatial frequency and contrast. The changes seen in ganglion cell temporal responses with changes in adaptation state were similar to those observed in human subjects and in turtle horizontal cells and cones tested with sinusoidally flickering stimuli; “Weber's Law” behavior was seen at low temporal frequencies but not at higher temporal frequencies. Temporal responses were analyzed in two ways: (1) at each light level, the TMTFs were fit by a model consisting of a cascade of low- and high-pass filters; (2) the family of TMTFs collected over a range of light levels for a given cell was fit by a linear negative feedback model in which the gain of the feedback was proportional to the mean light level. Analysis (1) revealed that the temporal responses of one class of monkey ganglion cells (M cells) were more phasic at both photopic and mesopic light levels than the responses of P ganglion cells. In analysis (2), the linear negative feedback model accounted reasonably well for changes in gain and dynamics seen in three P cells and one M cell. From the feedback model, it was possible to estimate the light level at which the dark-adapted gain of the cone pathways in the primate retina fell by a factor of two. This value was two to three orders of magnitude lower than the value estimated from recordings of isolated monkey cones. Thus, while a model which includes a single stage of negative feedback can account for the changes in gain and dynamics associated with light adaptation in the photopic and mesopic ranges of vision, the underlying physical mechanisms are unknown and may involve elements in the primate retina other than the cone.


2020 ◽  
Author(s):  
Kolia Sadeghi ◽  
Michael J. Berry

AbstractThe retina’s phenomenological function is often considered to be well-understood: individual retinal ganglion cells are sensitive to a projection of the light stimulus movie onto a classical center-surround linear filter. Recent models elaborating on this basic framework by adding a second linear filter or spike histories, have been quite successful at predicting ganglion cell spikes for spatially uniform random stimuli, and for random stimuli varying spatially with low resolution. Fitting models for stimuli with more finely grained spatial variations becomes difficult because of the very high dimensionality of such stimuli. We present a method of reducing the dimensionality of a fine one dimensional random stimulus by using wavelets, allowing for several clean predictive linear filters to be found for each cell. For salamander retinal ganglion cells, we find in addition to the spike triggered average, 3 identifiable types of linear filters which modulate the firing of most cells. While some cells can be modeled fairly accurately, many cells are poorly captured, even with as many as 4 filters. The new linear filters we find shed some light on the nonlinearities in the retina’s integration of temporal and fine spatial information.


2019 ◽  
Author(s):  
Manuel Spitschan

AbstractThe size of the pupil depends on light level. Watson & Yellott (2012) developed a unified formula to predict pupil size from luminance, field diameter, age, and number of eyes. Luminance reflects input from the L and M cones in the retina but ignores the contribution of intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin, which are known to control the size of the pupil. We discuss the role of melanopsin in controlling pupil size by reanalysing an extant data set. We confirm that melanopsin-weighted quantities, in conjunction with Watson & Yellott’s formula, adequately model intensity-dependent pupil size. We discuss the contributions of other photoreceptors into pupil control.


Author(s):  
János Geier ◽  
Mariann Hudák

The generally accepted explanation of the Hermann grid illusion is Baumgartner’s hypothesis that the illusory effect is generated by the response of retinal ganglion cells with concentric ON-OFF or OFF-ON receptive fields. To challenge this explanation, some simple distortions to the grid lines were introduced that make the illusion disappear totally, while all preconditions of Baumgartner’s hypothesis remained unchanged. Psychophysical experiments in which the distortion tolerance was measured showed the level of distortion at which the illusion disappears at a given type of distortion for a given subject. Statistical analysis shows that the distortion tolerance is independent of grid-line width within a wide range and of the type of distortion, except when one side of each line remains straight. The conclusion is the main cause of the Hermann grid illusion is the straightness of the edges of the grid lines. Similar results have been obtained in the scintillating grid.


1997 ◽  
Vol 110 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Jian Zhang ◽  
Wen Shen ◽  
Malcolm M. Slaughter

Metabotropic γ-aminobutyric acid (GABA) receptors were studied in amphibian retinal ganglion cells using whole cell current and voltage clamp techniques. The aim was to identify the types of receptor present and their mechanisms of action and modulation. Previous results indicated that ganglion cells possess two ionotropic GABA receptors: GABAAR and GABACR. This study demonstrates that they also possess two types of metabotropic GABAB receptor: one sensitive to baclofen and another to cis-aminocrotonic acid (CACA). The effects of these selective agonists were blocked by GDP-β-S. Baclofen suppressed an ω-conotoxin–GVIA-sensitive barium current, and this action was reversed by prepulse facilitation, indicative of a direct G-protein pathway. The effect of baclofen was also partially occluded by agents that influence the protein kinase A (PKA) pathway. But the effect of PKA activation was unaffected by prepulse facilitation, indicating PKA acted through a parallel pathway. Calmodulin antagonists reduced the action of baclofen, whereas inhibitors of calmodulin phosphatase enhanced it. Antagonists of internal calcium release, such as heparin and ruthenium red, did not affect the baclofen response. Thus, the baclofen-sensitive receptor may respond to influx of calcium. The CACA-sensitive GABA receptor reduced current through dihydropyridine-sensitive channels. Sodium nitroprusside and 8-bromo-cGMP enhanced the action of CACA, indicating that a nitric oxide system can up-regulate this receptor pathway. CACA-sensitive and baclofen-sensitive GABAB receptors reduced spike activity in ganglion cells. Overall, retinal ganglion cells possess four types of GABA receptor, two ionotropic and two metabotropic. Each has a unique electrogenic profile, providing a wide range of neural integration at the final stage of retinal information processing.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A103-A103
Author(s):  
Destiny Rupple ◽  
Brooke Mason ◽  
Andrew Tubbs ◽  
Fabian-Xosé Fernandez ◽  
Michael Grandner

Abstract Introduction Blue blocking glasses are often marketed to promote relaxation, sleep, and circadian health by attenuating melatonin-suppressing light exposure. But these glasses represent a wide range of tint and other lens properties. Further, the utility of these glasses under ecologically valid indoor conditions (where light is typically generated from overhead broadspectrum fluorescent lamps) is still unclear, especially across various products. Methods A calibrated spectroradiometer (Ocean Insight), cosine corrector, optic fiber, and software package were used to measure the absolute irradiance (uW/cm^2/nm) emitted from overhead fluorescent lighting in a closeted dark room. Thirty-one commercially available blue blockers were individually placed between the cosine corrector and the luminaire, at a standardized distance and angle, where intensity was measured and analyzed. Each lens was evaluated individually relative to the light source under identical conditions. Then, lenses were collapsed by type into the following groups: red-tinted lenses (RTL), orange-tinted lenses (OTL), orange-tinted lenses with blue reflectivity (OBL), brown-tinted lenses (BTL), yellow-tinted lenses (YTL), and clear reflective blue lenses (RBL). Results There was significant variation in light-blocking across lens types (one-way ANOVA, p < 0.0001). On average, RTL and BTL restricted 59% of the visible light measured from 380-780nm. OTL blocked 47% of the light in this range, while OBL blocked 29%. Both YTL and RBL blocked 14% of the exposure. When narrowing the range of light to 440-530nm (the part of the spectrum most likely to produce a response from melanopsin-expressing retinal ganglion cells), we estimated the following performance: the RTL and OTL blocked close to 100% of the light, OBL blocked 98%, BTL blocked 80%, YTL blocked 33%, and RBL blocked 15%. These differences were statistically significant (one-way ANOVA, p < 0.0001). Individual lenses performed variably within groups, but these differences were small. Conclusion Focusing on the portion of the visible spectrum most likely to suppress melatonin secretion, RTL and OTL blocked exposure the best, followed by OBL, BTL, YTL, and (lastly) RBL. Support (if any) R01MD011600, R01DA051321


Author(s):  
Thomas Euler ◽  
Katrin Franke ◽  
Tom Baden

Two-photon imaging of light stimulus-evoked neuronal activity has been used to study all neuron classes in the vertebrate retina, from the photoreceptors to the retinal ganglion cells. Clearly, the ability to study retinal circuits down to the level of single synapses or zoomed out at the level of complete populations of neurons, has been a major asset in our understanding of this beautiful circuit. In this chapter, we discuss the possibilities and pitfalls of using an all-optical approach in this highly light-sensitive part of the brain.


Sign in / Sign up

Export Citation Format

Share Document