Bipolar cells in the zebrafish retina

2010 ◽  
Vol 28 (1) ◽  
pp. 77-93 ◽  
Author(s):  
V.P. CONNAUGHTON

AbstractZebrafish are an existing model for genetic and developmental studies due to their rapid external development and transparent embryos, which allow easy manipulation and observation of early developmental stages. The application of the zebrafish model to vision research has allowed for examination of retinal development and the characteristics of different retinal cell types, including bipolar cells. In particular, bipolar cell development, including differentiation, maturation, and gene expression, has been documented, as has physiological properties, such as voltage- and ligand-gated currents, and neurotransmitter receptor and ion channel expression. Mutant strains and transgenic lines have been used to document how bipolar cell connections and/or development may be altered, and toxicological studies examining how environmental factors may impact bipolar cell activity have been performed. The purpose of this paper was to review the existing literature on zebrafish bipolar cells, to provide a comprehensive overview of current information pertaining to this retinal cell type.

2010 ◽  
Vol 28 (1) ◽  
pp. 29-37 ◽  
Author(s):  
HANNAH R. JOO ◽  
BETH B. PETERSON ◽  
TONI J. HAUN ◽  
DENNIS M. DACEY

AbstractParallel processing of visual information begins at the first synapse in the retina between the photoreceptors and bipolar cells. Ten bipolar cell types have been previously described in the primate retina: one rod and nine cone bipolar types. In this paper, we describe an 11th type of bipolar cell identified in Golgi-stained macaque retinal whole mount and vertical section. Axonal stratification depth, in addition to dendritic and axonal morphology, distinguished the “giant” cell from all previously well-recognized bipolar cell types. The giant bipolar cell had a very large and sparsely branched dendritic tree and a relatively large axonal arbor that costratified with the DB4 bipolar cell near the center of the inner plexiform layer. The sparseness of the giant bipolar’s dendritic arbor indicates that, like the blue cone bipolar, it does not contact all the cones in its dendritic field. Giant cells contacting the same cones as midget bipolar cells, which are known to contact single long-wavelength (L) or medium-wavelength (M) cones, demonstrate that the giant cell does not exclusively contact short-wavelength (S) cones and, therefore, is not a variant of the previously described blue cone bipolar. This conclusion is further supported by measurement of the cone contact spacing for the giant bipolar. The giant cell contacts an average of about half the cones in its dendritic field (mean ± s.d. = 52 ± 17.6%; n = 6), with a range of 27–82%. The dendrites from single or neighboring giant cells that converge onto the same cones suggest that the giant cell may selectively target a subset of cones with a highly variable local density, such as the L or M cones.


1994 ◽  
Vol 11 (2) ◽  
pp. 379-387 ◽  
Author(s):  
Elena V. Grigorenko ◽  
Hermes H. Yeh

AbstractThis study profiled the expression of the family of GABAA receptor β-subunits in the adult rat retina. Using a combination of reverse transcriptase reaction followed by polymerase chain reaction (RT-PCR) with gene-specific primers, the expression of mRNAs encoding the β1, β2, and β3 subunits was first examined in the intact retina and then in separated retinal nuclear layers. However, it was found that a critical analysis. had to be carried out at the level of the single cell in order to resolve the differential patterns of expression among the retinal cell types. When cells were isolated and identified following acute dissociation, RT-PCR revealed that individual rod photoreceptor cells expressed consistently the β1 and β2 messages while the bipolar cells expressed the β1 and β3 messages. Ganglion cells displayed considerable variability in β-subunit expression, perhaps reflecting their functional and morphological heterogeneity in the retina. In contrast, the nonneuronal Mueller cells did not express any of the β-subunit messages. These results indicate that the expression of GABAA receptor subunits is cell-type dependent. Furthermore, as the expression of other families of GABAA receptor subunits are profiled and the patterns of subunit assembly are better understood, our results raise the possibility that GABAA receptors with different subunit compositions can be expected to be coexpressed within a single retinal neuron.


1994 ◽  
Vol 5 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Charles L. Zucker ◽  
Berndt Ehinger ◽  
Magdalene Seiler ◽  
Robert B. Aramant ◽  
Alan R. Adolph

The development of five transplants of fetal retinal tissue to adult rat eyes was examined with the electron microscope. The transplants were of 9 to 10 weeks total age after conception in four cases and 20 weeks in one case. They were at stage E15 when transplanted. Transplants developed in both the epiretinal and subretinal spaces.The transplants were heterogeneously developed with some parts showing almost normal differentiation and others little. Subretinal transplants examined in this study were more developed than epiretinal grafts. Photoreceptor cells developed both inner and outer segments. Their synaptic terminals possessed output ribbon synapses with postsynaptic processes similar to those seen in normal retinas. In regions corresponding to the inner plexiform layer, the adult complement of synapses was seen, including advanced features such as serial synapses as well as reciprocal synapses at bipolar cell dyads. Incompletely differentiated synapses of both the amacrine and bipolar cell types were often observed, especially in the rat epiretinal transplants. Ganglion cell processes could not be identified with certainty.Although transplant cells were adjacent to host photoreceptor cells and pigment epithelium, obvious specializations or interactions were not observed. The experiments suggest that embryonic rat retinal cell transplants develop most or perhaps all of the structural components and neuronal circuitry necessary to transduce light and process some visual information.


Morphologically speaking, there are five kinds of cone cells in the retina of the rudd ( Scardinius erythrophthalmus ). But two of them, the principal elements of the double cones and the free principal cones, are probably functionally equivalent, while another, sparse, population of small ( oblique ) cones (which disappear in older fish), is unlikely to make a significant contribution to visual spectral sensitivity. Thus, principal and accessory cones (usually paired with one another), and single cones seem to be the three receptors which underlie the fish’s trichromacy. Photographic densitometry of individual cone cells was used to provide evidence that accessory cones contain a green-absorbing photopigment and the single cones a blue one. Other arguments are given in support of those identifications, and they also strongly suggest that principal cones contain the red-absorbing pigment. Golgi-impregnated bipolar cells were examined electron-microscopically to determine the specific patterns of synaptic connexion they make with these different, anatomically identifiable, colour cones and with the retinal rods. Three principal arrangements were distinguished (see figure 69, page 190). (1) Rod bipolar cells comprise two distinct morphological types, both of which connect exclusively to principal (red) cones as well as to the rods within the outlines of their dendritic fields. (2) Selective cone bipolar cells, more delicate neurons with considerably wider dendritic fields, connect (according to type) to one or other of the different colour cone populations. Examples analysed were specific for the accessory (green) or for the single (blue) cones; no bipolar cells were found connected only to red cones. (3) Mixed cone bipolars have the smallest dendritic fields, and connect to combinations of cones (for example, red and green, or green and blue, but not red and blue). They also have synaptic input (usually relatively sparse) from the rods. Cells were encountered connecting to all three cone types, but they were only partially analysed, and are not described at length. The light microscopic morphology of these bipolar cell types consistently reflects the detailed pattern of connexion each makes with the different receptor populations (just as the morphology of the cones reflects the spectral properties of their photopigment). But while their synaptic connectivity is generally highly specific for cone type, they do occasionally make anomalous connexions with the ‘wrong’ receptors. There is a high degree of divergence (page 85) at the receptor-bipolar synapses, and the different kinds of cones each characteristically connect to different numbers of bipolar cells. Principal (red) cones, which are the most numerous, individually connect to more bipolars than cones of other types, whose characteristic synaptic divergence is likewise related to the frequency with which they occur in the retina. However, rods, which are much more numerous than cones, do not conform with this generalization. The selectivity with which the synaptic terminals of the different cones are connected together by their invaginating basal processes was also examined. These processes link neighbouring synaptic terminals of differently coloured cones: specifically, principal (red) cone basal processes invaginate accessory (green) cone pedicles, and vice versa. Single (blue) cone basal processes connect only to accessory cone pedicles, but that synaptic relation is not reciprocated. These synapses between the cones have important bearing upon interpretation of the bipolar cell connectivity patterns. In their light, the interaction between colour channels which the convergence of different cones onto the mixed cone bipolar dendrites mediates, seems to re-iterate a process already undertaken more peripherally. Likewise, whereas the anatomy of the selective cone bipolars appears designed to convey activity from the individual cone populations, the responses of the receptors they sample must already be influenced by activity in other colour channels.


2010 ◽  
Vol 104 (5) ◽  
pp. 2778-2791 ◽  
Author(s):  
Daniel K. Freeman ◽  
Donald K. Eddington ◽  
Joseph F. Rizzo ◽  
Shelley I. Fried

Electric stimulation of the CNS is being evaluated as a treatment modality for a variety of neurological, psychiatric, and sensory disorders. Despite considerable success in some applications, existing stimulation techniques offer little control over which cell types or neuronal substructures are activated by stimulation. The ability to more precisely control neuronal activation would likely improve the clinical outcomes associated with these applications. Here, we show that specific frequencies of sinusoidal stimulation can be used to preferentially activate certain retinal cell types: photoreceptors are activated at 5 Hz, bipolar cells at 25 Hz, and ganglion cells at 100 Hz. In addition, low-frequency stimulation (≤25 Hz) did not activate passing axons but still elicited robust synaptically mediated responses in ganglion cells; therefore, elicited neural activity is confined to within a focal region around the stimulating electrode. Our results suggest that sinusoidal stimulation provides significantly improved control over elicited neural activity relative to conventional pulsatile stimulation.


1981 ◽  
Vol 211 (1184) ◽  
pp. 373-389 ◽  

A serial section analysis of photoreceptor synaptic bases was undertaken in the clawed frog Xenopus laevis . The developmental period from tadpole stage 48 through metamorphosis was studied. Horizontal cells contacted rod and cone photoreceptors at ribbon synapses; the number of such contacts per receptor base was constant for rods, but increased for cones as a function-of developmental stage. In pre-metamorphic animals bipolar cells contacted receptors only through basal junctions; their number in cone bases increased dramatically during development but was unchanged in rod bases. A densitometric estimation of the cleft width of basal junctions showed that it ranged from 10 to 18 nm, but the junctions could not be divided reliably into the ‘wide’ and ‘narrow’ categories reported for other vertebrate species. Near metamorphic climax a new type of ribbon-related bipolar cell junction appeared. Gap junctions between horizontal cells and conventional chemical synapses of horizontal cell onto bipolar cell processes were first seen in mid-larval developmental stages.


1989 ◽  
Vol 93 (1) ◽  
pp. 101-122 ◽  
Author(s):  
R A Stockton ◽  
M M Slaughter

Light-evoked intraretinal field potentials (electroretinogram, ERG) have been measured simultaneously with extracellular potassium fluxes in the amphibian retina. The application of highly selective pharmacologic agents permitted us to functionally isolate various classes of retinal neurons. It was found that: (a) application of APB (2-amino-4-phosphonobutyrate), which has previously been shown to selectively abolish the light responsiveness of ON bipolar cells, causes a concomitant loss of the ERG b-wave and ON potassium flux. (b) Conversely, PDA (cis 2,3-piperidine-dicarboxylic acid) or KYN (kynurenic acid), which have been reported to suppress the light responses of OFF bipolar, horizontal, and third-order retinal neurons, causes a loss of the ERG d-wave as well as OFF potassium fluxes. The b-wave and ON potassium fluxes, however, remain undiminished. (c) NMA (N-methyl-DL-aspartate) or GLY (glycine), which have been reported to suppress the responses of third-order neurons, do not diminish the b- or d-waves, nor the potassium fluxes at ON or OFF. This leads to the conclusion that the b-wave of the ERG is a result of the light-evoked depolarization of the ON bipolar neurons. This experimental approach has resulted in two further conclusions: (a) that the d-wave is an expression of OFF bipolar and/or horizontal cell depolarization at the termination of illumination and (b) that light-induced increases in extracellular potassium concentration in both the inner (proximal) and outer (distal) retina are the result of ON bipolar cell depolarization.


2018 ◽  
Author(s):  
Marion F. Haug ◽  
Manuela Berger ◽  
Matthias Gesemann ◽  
Stephan C. F. Neuhauss

AbstractThe retina is a complex neural circuit in which visual information is transmitted and processed from light perceiving photoreceptors to projecting retinal ganglion cells. Much of the computational power of the retina rests on signal integrating interneurons, such as bipolar cells in the outer retina. While mammals possess about 10 different bipolar cell types, zebrafish (Danio rerio) has at least six ON-type, seven OFF-type, and four mixed-input bipolar cells. Commercially available antibodies against bovine and human conventional protein kinase C (PKC) α and -β are frequently used as markers for retinal ON-bipolar cells in different species, despite the fact that it is not known which bipolar cell subtype(s) they actually label.Moreover, the expression pattern of the five prkc genes (coding for PKC proteins) has not been systematically determined. While prkcg is not expressed in retinal tissue, the other four prkc (prkcaa, prkcab, prkcba, prkcbb) transcripts were found in different parts of the inner nuclear layer and some as well in the retinal ganglion cell layer.Immunohistochemical analysis in adult zebrafish retina using PKCα and PKCβ antibodies showed an overlapping immunolabeling of ON-bipolar cells that are most likely of the BON s6L or RRod type and of the BON s6 type. However, comparison of transcript expression with immunolabling, implies that these antibodies are not specific for one single zebrafish conventional PKC, but rather detect a combination of PKC -α and -β variants.


Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 161
Author(s):  
Daniëlle Swinkels ◽  
Yannick Das ◽  
Sai Kocherlakota ◽  
Stefan Vinckier ◽  
Eric Wever ◽  
...  

Retinal degeneration is a common feature in peroxisomal disorders leading to blindness. Peroxisomes are present in the different cell types of the retina; however, their precise contribution to retinal integrity is still unclear. We previously showed that mice lacking the central peroxisomal β-oxidation enzyme, multifunctional protein 2 (MFP2), develop an early onset retinal decay including photoreceptor cell death. To decipher the function of peroxisomal β-oxidation in photoreceptors, we generated cell type selective Mfp2 knockout mice, using the Crx promotor targeting photoreceptors and bipolar cells. Surprisingly, Crx-Mfp2−/− mice maintained photoreceptor length and number until the age of 1 year. A negative electroretinogram was indicative of preserved photoreceptor phototransduction, but impaired downstream bipolar cell signaling from the age of 6 months. The photoreceptor ribbon synapse was affected, containing free-floating ribbons and vesicles with altered size and density. The bipolar cell interneurons sprouted into the ONL and died. Whereas docosahexaenoic acid levels were normal in the neural retina, levels of lipids containing very long chain polyunsaturated fatty acids were highly increased. Crx-Pex5−/− mice, in which all peroxisomal functions are inactivated in photoreceptors and bipolar cells, developed the same phenotype as Crx-Mfp2−/− mice. In conclusion, the early photoreceptor death in global Mfp2−/− mice is not driven cell autonomously. However, peroxisomal β-oxidation is essential for the integrity of photoreceptor ribbon synapses and of bipolar cells.


2020 ◽  
Author(s):  
Amanda J. McLaughlin ◽  
Kumiko A. Percival ◽  
Jacqueline Gayet-Primo ◽  
Teresa Puthussery

AbstractAdapting between scotopic and photopic illumination involves switching the routing of retinal signals between rod and cone-dominated circuits. In the daytime, cone signals pass through parallel On and Off cone bipolar cells, that are sensitive to increments and decrements in luminance, respectively. At night, rod signals are routed into these cone-pathways via a key glycinergic interneuron, the AII amacrine cell (AII-AC). In primates, it is not known whether AII-ACs contact all Off-bipolar cell types indiscriminately, or whether their outputs are biased towards specific Off-bipolar cell types. Here, we show that the rod-driven glycinergic output of AII-ACs is strongly biased towards a subset of macaque Off-cone bipolar cells. The Off-bipolar types that receive this glycinergic input have sustained physiological properties and include the Off-midget bipolar cells, which provide excitatory input to the Off-midget ganglion cells (parvocellular pathway). The kinetics of the glycinergic events are consistent with the involvement of the α1 glycine receptor subunit. Taken together with results in mouse retina, our findings point towards a conserved motif whereby rod signals are preferentially routed into sustained Off signaling pathways.Significance StatementVisual signals pass through different retinal neurons depending on the prevailing level of illumination. Under night-time light levels, signals from rods pass through the AII amacrine cell, an inhibitory interneuron that routes rod signals into On and Off bipolar cells to detect increments and decrements in light intensity, respectively. Here, we show in primate retina that the output of AII amacrine cells is strongly biased towards specific Off bipolar cell types, which suggests that rod signals reach the brain via specific neural channels. Our results further our understanding of how visual signals are routed through visual circuits during night-time vision.


Sign in / Sign up

Export Citation Format

Share Document