Evolutionary maintenance of sexual dimorphism in head size in the lizard Zootoca vivipara: a test of two hypotheses

2003 ◽  
Vol 259 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Lumír Gvozdík ◽  
Raoul Van Damme
2020 ◽  
Vol 98 (6) ◽  
pp. 377-389
Author(s):  
S. Naretto ◽  
M. Chiaraviglio

The intensity of mating competition varies according to the temporal and spatial distribution of individuals. Measuring sexual dimorphism over time and interpreting the association between individuals is therefore important if we aim to understand how sexual traits are influenced. We examined sex differences in the Achala Copper Lizard (Pristidactylus achalensis (Gallardo, 1964)), an endemic species from the highest part of mountains of central Argentina. Over 4 years, we explored sex-specific variation in body size, head size, interlimb length, and body colouration. Furthermore, we evaluated how these traits varied temporally, and we also explored whether the spatial distribution of individuals is explained by variation in these traits. We found that P. achalensis is a species with sexual dimorphism in multiple characters, including body size, head size, and colouration. Interestingly, some traits related to mating, such as head width, show a temporal variability in both sexes, whereas other traits, such as colouration, varies seasonally only in males. Our results underline the intriguing possibility of seasonal morphological changes related to mating, and more broadly that sex differences are influenced by sexual selection pressures mediated by temporal variation in mate competition.


2007 ◽  
Vol 85 (1) ◽  
pp. 92-98 ◽  
Author(s):  
C.M. Gienger ◽  
Daniel D. Beck

We tested the hypothesis that helodermatid lizards (Gila monsters, Heloderma suspectum Cope, 1869, and beaded lizards, H. horridum (Wiegmann, 1829)) show sexual dimorphism in morphological traits related to male–male agonistic behaviors. Male–male combat in helodermatid lizards involves repeated sequences of ritualized grappling. Male Gila monsters use their heads in attempts to gain or maintain a superior position during repeated combat bouts that may last for hours. Pairs of fighting male beaded lizards form spectacular body arches, with abdomens adpressed and snouts, forelimbs, and tail tips contacting the ground. We measured body size, head size, and tail length in 208 preserved H. suspectum, and body size and tail length (but not head size) in 79 live H. horridum, then tested for sexual dimorphism using analysis of covariance. Male Gila monsters had proportionately larger heads than females but did not differ in tail length or body size. Male beaded lizards had proportionately longer tails than females and were larger in body size only when the largest individuals were included in the analysis. Differences in head dimensions (in H. suspectum) and tail length (in H. horridum) are likely the result of sexual selection acting through male–male agonistic behaviors in this unique lizard taxon.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Richard Shine ◽  
Claire Goiran

AbstractIn snakes, divergence in head size between the sexes has been interpreted as an adaptation to intersexual niche divergence. By overcoming gape-limitation, a larger head enables snakes of one sex to ingest larger prey items. Under this hypothesis, we do not expect a species that consumes only tiny prey items to exhibit sex differences in relative head size, or to show empirical links between relative head size and fitness-relevant traits such as growth and fecundity. Our field studies on the sea snake Emydocephalus annulatus falsify these predictions. Although these snakes feed exclusively on fish eggs, the heads of female snakes are longer and wider than those of males at the same body length. Individuals with wider heads grew more rapidly, reproduced more often, and produced larger litters. Thus, head shape can affect fitness and can diverge between the sexes even without gape-limitation. Head size and shape may facilitate other aspects of feeding (such as the ability to scrape eggs off coral) and locomotion (hydrodynamics); and a smaller head may advantage the sex that is more mobile, and that obtains its prey in narrow crevices rather than in more exposed situations (i.e., males).


1993 ◽  
Vol 71 (9) ◽  
pp. 1715-1723 ◽  
Author(s):  
P. le F. N. Mouton ◽  
J. H. van Wyk

In a high-altitude population of the Drakensberg crag lizard, Pseudocordylus melanotus, most adult males, unlike adult females, are brightly coloured, and they are larger in body size and have relatively larger heads than females. Three basic colour phases can be distinguished among the brightly coloured adult males. No apparent differences in reproductive activity, number and differentiation state of the generation glands and femoral pores, or scar frequency were noted among the three colour phases. In males the development of bright colours and the differentiation of the epidermal glands coincide with the onset of sexual maturity. Sexual dimorphism in head size of adults is due to a decrease in female head size relative to juvenile head size as well as an increase in relative head size of males. Preliminary data indicate a social structure of territorial polygyny in P. melanotus and suggest that the dimorphism can partly be ascribed to sexual selection. There are also, however, indications of altitudinal variation in the expression of sexual dimorphism, which may be explained in terms of differential energy allocation by females at different altitudes.


2003 ◽  
Vol 63 (2) ◽  
pp. 321-328 ◽  
Author(s):  
P. F. Teixeira-Filho ◽  
C. F. D. Rocha ◽  
S. C. Ribas

We investigated the feeding habits of the teiid lizard Cnemidophorus littoralis in the markedly seasonal habitat of Restinga da Barra de Maricá (22º57'S, 43º50'W), Rio de Janeiro State, Brazil, to evaluate to what extent its diet is ontogenetically, sexually, and/or seasonally conservative. Lizard stomach contents were analyzed, identified, counted, estimated for volume (in mm³), and grouped in four classes (active, sedentary, and clumped preys, and plant material). The relative contribution of each food class to the total prey volume consumed by adult males and females and juveniles was compared in three ways: between juveniles and adults, sexes, and seasons (wet and dry). Sexual dimorphism in head size was tested by comparing head width and jaw length using analysis of covariance (ANCOVA). Isopterans were the most important prey item, occurring in 93% of the lizard stomachs examined and corresponding to 96.4% of total prey content and 69.7% of total prey volume. They occurred in high frequencies in the stomachs of C. littoralis throughout all study months. We found no sexual, ontogenetic, or seasonal differences in C. littoralis diet although the sexes differed significantly in head width. We concluded that isopterans are the main item in the diet of C. littoralis in Restinga da Barra de Maricá, both for juveniles and adults. The lack of seasonal, sexual, or ontogenetic variation in its diet results from the massive consumption of these insects. Isopterans are small, occur in clumps, and are available year-round, and thus are an advantageous food item for the active forager C. littoralis. We also found sexual dimorphism in the head size of C. littoralis: males have wider heads than females. This dimorphism, however, does not seem to be related with the diet of the species, and is probably a result of sexual selection.


Author(s):  
Fred Eiserling ◽  
A. H. Doermann ◽  
Linde Boehner

The control of form or shape inheritance can be approached by studying the morphogenesis of bacterial viruses. Shape variants of bacteriophage T4 with altered protein shell (capsid) size and nucleic acid (DNA) content have been found by electron microscopy, and a mutant (E920g in gene 66) controlling head size has been described. This mutant produces short-headed particles which contain 2/3 the normal DNA content and which are non-viable when only one particle infects a cell (Fig. 1).We report here the isolation of a new mutant (191c) which also appears to be in gene 66 but at a site distinct from E920g. The most striking phenotype of the mutant is the production of about 10% of the phage yield as “giant” virus particles, from 3 to 8 times longer than normal phage (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document