Costa Recta beach, Deception Island, West Antarctica: a retreated scarp of a submarine fault?

2005 ◽  
Vol 17 (3) ◽  
pp. 418-426 ◽  
Author(s):  
FERMÍN FERNÁNDEZ-IBÁÑEZ ◽  
RAUL PÉREZ-LÓPEZ ◽  
JOSÉ J. MARTÍNEZ-DÍAZ ◽  
CARLOS PAREDES ◽  
JORGE L. GINER-ROBLES ◽  
...  

Deception Island (South Shetlands, Antarctica) is one of the most active volcanoes in Antarctica, having erupted recently in 1967, 1969 and 1970, damaging scientific stations on the island. It is also seismically very active. The island has attracted the attention of many researchers as it constitutes an undisturbed natural laboratory to study seismo-volcanic events and how they affect landscape modelling and evolution. One of the most remarkable geological and geomorphological features on Deception Island is the linearity of its easternmost coastal landform, the origin of which remains unknown. Some answers, based on presence of strike-slip fault or on the ice cap and beach geomorphological dynamics, have been reported in the literature. Our new work provides several indications of the existence of a dip-slip submarine fault, parallel to the coast (NNW–SSE), which suggests a tectonic origin for this morphological feature. Uplifted marine terraces, incision of a fluvial network over the ice cap, normal faulting parallel to the coast in the north and south rock heads bounding the beach and sharp shelf-break with rather constant slope, constitute some of this evidence. Terrace uplift and fluvial channel incision decreasing southward from Macaroni Point, indicates possible tilt movement across this inferred fault plane.

1991 ◽  
Vol 28 (10) ◽  
pp. 1594-1612 ◽  
Author(s):  
Marc Foisy ◽  
Gilbert Prichonnet

Sedimentological and petrographical data obtained from five sections located north and south of the Caledonian Highlands in southeastern New Brunswick demonstrate the existence of three main till units and one glaciofluvial unit, which have been grouped in four distinct lithostratigraphic units. The lower till was deposited by a glacier that overrode the Caledonian Highlands from northwest to southeast and advanced as far as Nova Scotia during Middle(?) to Late Wisconsinan times. The overlying middle till from the north provides evidence that ice continued to advance across the Highlands from northwest toward southeast and then was partially overwhelmed by another glacier that was advancing southwest along the southern border of the Highlands: this glacier deposited a coeval middle till. During Late Wisconsinan deglaciation, ice separated into two masses: a residual ice cap with radial outflow from the Highlands; and a lobe in the Chignecto Bay, retreating toward the northeast. The existence of a plateau ice cap is demonstrated by the presence of till and glaciofluvial deposits in the upper part of all surveyed sections, and is supported by the sequence of ice flow patterns recorded by striae and the centrifugal distribution of meltwater flow indicators. The weak development of soils, the fresh appearance of till and morainic landforms, and the lack of periglacial features throughout the area, especially on the Highlands, all favour the interpretation that the Caledonian Highlands were not a nunatak during the glacial maximum of the Late Wisconsinan Substage.


2018 ◽  
Vol 18 (1) ◽  
pp. 27-38
Author(s):  
Nguyen Cong Quan ◽  
Pham Van Hung ◽  
Nguyen Van Dung

Study on the geomorphological features, landform changes and correlated natural hazardous events was based on analyzing available literature and data. The coastal landform of Thach Han river mouth is a result from fluvial, fluvial - marine and marine accumulation along with local tectonic activities during Pliocene - Quaternary. During Pliocene - Pleistocene, western uplift and eastern subsidence movements were forming the types of landforms such as hills, erosion and abrasion terraces and accumulated plains of fluvial and fluvial - marine sediments. From early to middle Holocene, subsidence movements and fluvial, fluvial - marine and marine accumulation formed 4 types of accumulated plains as follows: Fluvial - marine plain in the central part, marine plains extending to the north and south of the studied area. From late Holocene to present, differentiated tectonic movements and fluvial and fluvial - marine accumulation have formed 6 types of different landforms (fluvial, lacustrine, marshy and marine origins ...etc.). Morphodynamic processes including erosion and sedimentation are natural hazards which cause damage to economy and people's life in the coatal zone of Thach Han river mouth. The erosion has been scattered along the banks of the Thach Han and Cam Lo rivers, at Gio Viet, Gio Mai, Trieu Giang, Ai Tu, and coastal erosion occurred north of Cua Viet.


2021 ◽  
Author(s):  
Bastian Lopez ◽  
Joaquin Bastias ◽  
Daniela Matus ◽  
Ricardo Jaña ◽  
Marcelo Leppe

<p>King George Island is the largest one of the South Shetland Islands group distributed parallel to and separated by the Bransfield Strait of the northern tip of Antarctic Peninsula. The archipelago of the South Shetlands is mainly composed of the products of the active margin developed as a result of the subduction of the Phoenix Plate beneath the continental crust of the Antarctic Peninsula (e.g. Barker, 1982; Bastias et al., 2019). The lithologies are largely dominated by Mesozoic and Cenozoic sedimentary and volcanic successions that are cut by a few hypabyssal plutons. While some authors have suggested a southwest to northeast trend along the archipelago from older to younger magmatic activity (e.g. Haase et al., 2012), others have indicated that some of the magmatic events may have been recorded along the entire archipelago (e.g. Valanginian arc rocks; Bastias et al., 2019). Regardless, King George Island hosts an exceptional stratigraphical record of the Cenozoic period. Moreover, this island is mostly covered by an ice cap at the present day, which is commonly terminated with ice cliffs around much of the island. The southern edge of the island host Mesozoic and Paleogene successions, these rocks are dominated by volcanic and volcaniclastic units. The rocks in King George Island are generally young to the east and to the north ends. Cape Melville, the southeast extreme of the island, hosts the youngest sedimentary rocks known on the island: the Moby Dick Group (Birkenmajer, 1985).</p><p>While several authors have presented local studies in the King George Island over the last three decades, an integrated assessment of the outcropping units in the entire island remains unexplored. A new geological map for King George Island will allow to update the current understanding of the stratigraphy of the South Shetland Islands, which will help to support not only the geological studies but also those focused on the environmental and paleontological record.</p><p>Barker, 1982. Journal of the Geological Society 19, 787-801. (DOI: 10.1144/gsjgs.139.6.0787)</p><p>Bastias et al. (2019). International Geology Review 62 (11), 1467-1484. (DOI: 10.1080/00206814.2019.1655669)</p><p>Birkenmajer (1985). Bulletin Polish Academic Earth Sciences 33:15-23.</p><p>Haase et al. (2012). Contributions to Mineralogy and Petrology 163, 1103-1119. (DOI: 10.1007/s00410-012-0719-7).</p>


2007 ◽  
Vol 29 (3) ◽  
pp. 415-426
Author(s):  
Pham Van Ninh ◽  
Phan Ngoc Vinh ◽  
Nguyen Manh Hung ◽  
Dinh Van Manh

Overall the evolution process of the Red River Delta based on the maps and historical data resulted in a fact that before the 20th century all the Nam Dinh coastline was attributed to accumulation. Then started the erosion process at Xuan Thuydistrict and from the period of 1935 - 1965 the most severe erosion was contributed in the stretch from Ha Lan to Hai Trieu, 1965 - 1990 in Hai Chinh - Hai Hoa, 1990 - 2005 in the middle part of Hai Chinh - Hai Thinh (Hai Hau district). The adjoining stretches were suffered from not severe erosion. At the same time, the Ba Lat mouth is advanced to the sea and to the North and South direction by the time with a very high rate.The first task of the mathematical modeling of coastal line evolution of Hai Hau is to evaluate this important historical marked periods e. g. to model the coastal line at the periods before 1900, 1935 - 1965; 1965 - 1990; 1990 - 2005. The tasks is very complicated and time and working labors consuming.In the paper, the primarily results of the above mentioned simulations (as waves, currents, sediments transports and bottom - coastal lines evolution) has been shown. Based on the obtained results, there is a strong correlation between the protrusion magnitude and the southward moving of the erosion areas.


2018 ◽  
Vol 154 (3) ◽  
pp. 179-196
Author(s):  
Michael Darby

Some 2,000 Ptiliidae collected in the North and South Islands of New Zealand in 1983/1984 by Peter Hammond of the Natural History Museum, London, are determined to 34 species, four of which are new to the country. As there are very few previous records, most from the Auckland district of North Island, the Hammond collection provides much new distributional data. The three new species: Nellosana insperatus sp. n., Notoptenidium flavum sp. n., and Notoptenidium johnsoni sp. n., are described and figured; the genus Ptiliodes is moved from Acrotrichinae to Ptiliinae, and Ptenidium formicetorum Kraatz recorded as a new introduction. Information is provided to aid separation of the new species from those previously recorded.


Sign in / Sign up

Export Citation Format

Share Document