Productivity enhancement in hydrofractured oil reservoirs

1990 ◽  
Vol 1 (1) ◽  
pp. 25-46
Author(s):  
Patrick S. Hagan ◽  
Robert W. Cox

Low permeability formations are often hydrofractured to increase the production rate of oil and gas. This process creates a thin, but highly permeable, fracture which provides an easy path for oil and gas to flow through the reservoir to the borehole. Here we examine the payoff of hydrofracturing by determining the increased production rate of a hydrofractured well. We find explicit formulas for the steady production rate in the three regimes of small, intermediate, and large (dimensionless) fracture conductivities. Previously, only the formula for the large fracture conductivity case was known.We assume that Darcy flow pertains throughout the reservoir. Then, the steady fluid flow through the reservoir is governed by Laplace's equation with a second-order boundary condition along the fracture. We first analyze this boundary value problem for the case of small fracture conductivities. An explicit formula for the production rate is obtained for this case, essentially by combining singular perturbation methods with spectral methods in a function space which places the second-order boundary condition on the same footing as Laplace's equation. Next, we re-cast Laplace's equation as a variational principle which has the second-order boundary condition as its natural boundary condition. This allows us to use simple trial functions to derive accurate estimates of the production rate in the intermediate conductivity case. Then, an asymptotic analysis is used to find the production rate for the large fracture conductivity case. Finally, the asymptotic and variationally-derived production rate formulasare compared to exact values of the production rate, which have been obtained numerically.It may be feasible to create more than a single fracture about a borehole. So we also develop similar asymptotic and variational formulas for the production rate of a well with multiple fractures.

2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Xingbang Meng ◽  
Jiexiang Wang

Hydraulic fracturing stimulation has become a routine for the development of shale oil and gas reservoirs, which creates large volumes of fracturing networks by helping the hydrocarbon to transport quickly into the wellbore. However, the optimal fracture spacing distance and fracture conductivity are still unclear for the field practice, even though the technique has improved significantly over the last several years. In this work, an analytical method is proposed to address it. First, the analytical production rate for a single fracture is proposed, and then, we apply Duhamel principle to obtain the production rate of a horizontal well with multifractures. Based on this model, the flow regimes and essential affecting factors including fracture spacing, fracture conductivity, and skin factor are analyzed in this work. The optimal values and suggestion are provided based on the simulation results.


2018 ◽  
Vol 22 ◽  
pp. 01016 ◽  
Author(s):  
Adıgüzel A. Dosiyev ◽  
Rifat Reis

A new method for the solution of a nonlocal boundary value problem with integral boundary condition for Laplace's equation on a rectangular domain is proposed and justified. The solution of the given problem is defined as a solution of the Dirichlet problem by constructing the approximate value of the unknown boundary function on the side of the rectangle where the integral boundary condition was given. Further, the five point approximation of the Laplace operator is used on the way of finding the uniform estimation of the error of the solution which is order of 0(h2), where hi s the mesh size. Numerical experiments are given to support the theoretical analysis made.


Two related ways to invariantly study higher derivatives, new-tensors and derivative strings, are compared, and the idea of suppression operator, or multiplier, is introduced. It renders the formal expression of the new objects almost as simple as that of ordinary tensors. Jacobians as a subgroup of the full second-order group are identified, and the harmonic subgroup leaving Laplace’s equation invariant is determined. The wider principle of general covariance entailed by the full group is considered. In particular, electrogravitic potentials are defined, and the exploration of their field theory begun.


1931 ◽  
Vol 2 (3) ◽  
pp. 135-139 ◽  
Author(s):  
H. S. Ruse

Hadamard defines the “elementary solution” of the general linear partial differential equation of the second order, namely(Aik, BiC being functions of the n variables x1, x2, .., xn, which may be regarded as coordinates in a space of n dimensions), to be one of those solutions which are infinite to as low an order as possible at a given point and on every bicharacteristic through that point.


Sign in / Sign up

Export Citation Format

Share Document