Production Performance Evaluation of Multifractured Horizontal Wells in Shale Oil Reservoirs: An Analytical Method

2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Xingbang Meng ◽  
Jiexiang Wang

Hydraulic fracturing stimulation has become a routine for the development of shale oil and gas reservoirs, which creates large volumes of fracturing networks by helping the hydrocarbon to transport quickly into the wellbore. However, the optimal fracture spacing distance and fracture conductivity are still unclear for the field practice, even though the technique has improved significantly over the last several years. In this work, an analytical method is proposed to address it. First, the analytical production rate for a single fracture is proposed, and then, we apply Duhamel principle to obtain the production rate of a horizontal well with multifractures. Based on this model, the flow regimes and essential affecting factors including fracture spacing, fracture conductivity, and skin factor are analyzed in this work. The optimal values and suggestion are provided based on the simulation results.

2021 ◽  
Vol 2057 (1) ◽  
pp. 012078
Author(s):  
A M Skopintsev

Abstract Hydraulic fracturing is a technology that is widely used in the development of oil and gas formations. Given that the fracture closure has a strong impact on production, quantifying the resulting fracture conductivity is critical for optimizing treatment design. The goal of this paper is to better understand the influence of the closing stress on the fracture conductivity when the proppant distribution is heterogeneous. In addition to the spatial proppant distribution, the conductivity of the propped fracture is affected by proppant deformation and embedment. Numerical results indicate that compressibility of proppant can significantly change the residual fracture aperture and, consequently, production performance in oil and gas reservoirs


1990 ◽  
Vol 1 (1) ◽  
pp. 25-46
Author(s):  
Patrick S. Hagan ◽  
Robert W. Cox

Low permeability formations are often hydrofractured to increase the production rate of oil and gas. This process creates a thin, but highly permeable, fracture which provides an easy path for oil and gas to flow through the reservoir to the borehole. Here we examine the payoff of hydrofracturing by determining the increased production rate of a hydrofractured well. We find explicit formulas for the steady production rate in the three regimes of small, intermediate, and large (dimensionless) fracture conductivities. Previously, only the formula for the large fracture conductivity case was known.We assume that Darcy flow pertains throughout the reservoir. Then, the steady fluid flow through the reservoir is governed by Laplace's equation with a second-order boundary condition along the fracture. We first analyze this boundary value problem for the case of small fracture conductivities. An explicit formula for the production rate is obtained for this case, essentially by combining singular perturbation methods with spectral methods in a function space which places the second-order boundary condition on the same footing as Laplace's equation. Next, we re-cast Laplace's equation as a variational principle which has the second-order boundary condition as its natural boundary condition. This allows us to use simple trial functions to derive accurate estimates of the production rate in the intermediate conductivity case. Then, an asymptotic analysis is used to find the production rate for the large fracture conductivity case. Finally, the asymptotic and variationally-derived production rate formulasare compared to exact values of the production rate, which have been obtained numerically.It may be feasible to create more than a single fracture about a borehole. So we also develop similar asymptotic and variational formulas for the production rate of a well with multiple fractures.


2019 ◽  
Vol 9 (9) ◽  
pp. 1821
Author(s):  
Mingtao Wu ◽  
Xiaodong Wang ◽  
Wenqi Zhao ◽  
Lun Zhao ◽  
Meng Sun ◽  
...  

Most naturally fractured gas reservoirs in China exhibit strongly heterogeneous, abnormally high-pressured and, stress-sensitive behaviors. In this work, a semianalytical solution is developed to study the production performance for limited-entry well in composite naturally fractured formations. The pressure-dependent porosity and permeability, anisotropy and limited-entry characteristics are taken into consideration. Furthermore, conventional Warren-Root model is amended to accommodate for permeability anisotropy. Laplace and finite Fourier cosine transforms are used to solve the diffusivity equations. The model is verified on the basis of previous literature’s results and data of a field example from Moxi gas field in Southwest China. Through the parameters sensitivity analysis, the effects of prevailing factors on production performance are investigated. Results indicate that a large inner region radius and high mobility ratio can improve gas production rate in the early stage, while they also lead to a drastic decline of production rate in the late stage. Large permeability stress-dependent coefficient and low penetrated interval both have a negative impact on production rate. With its high efficiency and simplicity, this proposed approach can serve as a convenient tool to evaluate the behavior of partially penetrated production well in abnormally high-pressured composite naturally fractured gas reservoirs.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Jia Li ◽  
Boyun Guo ◽  
Yin Feng

Natural gas and oil exploration and production from shale formations have gained a great momentum in many regions in the past five years. Producing hydrocarbons from shale is challenging because of low productivity of wells. Optimal design of transverse fractures is a key to achieving successful well completion and field economics. This paper presents a simple analytical method to determine the minimum fracture spacing required for preventing fracture-merging. Result of the analytical method has been verified by a Finite Element Method for a typical fracturing condition in a shale gas formation. Field performances of shale gas wells are found consistent with what suggested by this work. The analytical method presented in this paper can replace the sophisticated solutions and time-consuming numerical simulators in calculating stresses around hydraulic fractures and identifying the minimum required fracture spacing. The method can be applied to designing of multifrac completions in shale plays to optimize placement of transverse fractures for maximizing well productivity and hydrocarbon recovery. This work provides engineers a simple tool for optimizing their well completion design in shale gas reservoirs.


Sign in / Sign up

Export Citation Format

Share Document