Versatility in the timing of seed germination of the cold desert herbaceous perennial Leontice incerta (Berberidaceae)

2020 ◽  
Vol 30 (1) ◽  
pp. 37-44
Author(s):  
Jannathan Mamut ◽  
Cai-Yun Zhang ◽  
Dun-Yan Tan ◽  
Carol C. Baskin ◽  
Jerry M. Baskin

AbstractOnly a few studies have been performed on seed germination of perennial ephemeral species native to the cold deserts of central Asia. We hypothesized that seeds of the cold desert perennial ephemeral Leontice incerta exhibit versatility in the timing of germination, that is, having the capacity to germinate at any time in summer, autumn and next spring. At dispersal in late May, only about 30% of the seeds could germinate; thus, a high percentage of the seeds was dormant. Seeds had a fully developed embryo, and dry storage, cold stratification, warm stratification and gibberellin promoted germination; we concluded that they have non-deep physiological dormancy. Seeds buried under natural conditions during summer germinated to 57–86% in autumn (late October) when exhumed and incubated at 5/2–25/15°C. However, seeds were sown in soil exposed to natural temperature and (low) precipitation did not germinate until next spring when the soil was moist. Thus, like various cold desert annuals, seeds of the perennial L. incerta can germinate in summer, autumn and next spring, depending on the availability of soil moisture (rainfall). Rainfall in cold deserts can play an important role in shaping seed germination traits of desert plants.

2018 ◽  
Vol 66 (3) ◽  
pp. 218 ◽  
Author(s):  
Vidushi Thusithana ◽  
Sean M. Bellairs ◽  
Christine S. Bach

Seed germination traits of seasonal rainforest species differ from permanently moist evergreen rainforest species due to the prolonged seasonal drought. We investigated whether seed germination traits used to categorise evergreen rainforest species into pioneer and climax guilds were applicable to seasonal rainforest species. Seed dormancy, light requirements for germination and seed storage types of five climax and thirteen pioneer species of a coastal vine thicket were studied. Results were compared with published studies of evergreen rainforest species. Evergreen rainforest pioneer species are typically dormant, require light to germinate and tolerate desiccation, whereas climax species are typically non-dormant, tolerate shade during germination and are sensitive to desiccation. In seasonal rainforest we found that a high proportion of pioneer species had seeds that were non-dormant (62%), and a high proportion of pioneer species germinated equally well in light and dark conditions. In seasonal rainforest, we found that the majority of climax species had desiccation tolerant seeds, whereas in evergreen rainforest the proportion of climax species producing desiccation sensitive seeds is equal to or greater than the proportion of species with desiccation tolerant seeds. In seasonal rainforest species physical, physiological and epicotyl dormancy types were found. Generally, for seasonal rainforest species, the prevalent form of dormancy in pioneer species was physical dormancy whereas physiological dormancy was most common in evergreen rainforest pioneer species with dormancy. Our results suggest that the contrasting seed biology traits that typically apply to pioneer and climax species of evergreen rainforest species don’t typically apply to seasonal rainforest species.


PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0140983 ◽  
Author(s):  
Yuan M. Zhou ◽  
Juan J. Lu ◽  
Dun Y. Tan ◽  
Carol C. Baskin ◽  
Jerry M. Baskin

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1765
Author(s):  
Wei Zhang ◽  
Lian-Wei Qu ◽  
Jun Zhao ◽  
Li Xue ◽  
Han-Ping Dai ◽  
...  

The innate physiological dormancy of Tulipa thianschanica seeds ensures its survival and regeneration in the natural environment. However, the low percentage of germination restricts the establishment of its population and commercial breeding. To develop effective ways to break dormancy and improve germination, some important factors of seed germination of T. thianschanica were tested, including temperature, gibberellin (GA3) and/or kinetin (KT), cold stratification and sowing depth. The percentage of germination was as high as 80.7% at a constant temperature of 4 °C, followed by 55.6% at a fluctuating temperature of 4/16 °C, and almost no seeds germinated at 16 °C, 20 °C and 16/20 °C. Treatment with exogenous GA3 significantly improved the germination of seeds, but KT had a slight effect on the germination of T. thianschanica seeds. The combined treatment of GA3 and KT was more effective at enhancing seed germination than any individual treatment, and the optimal hormone concentration for the germination of T. thianschanica seeds was 100 mg/L GA3 + 10 mg/L KT. In addition, it took at least 20 days of cold stratification to break the seed dormancy of T. thianschanica. The emergence of T. thianschanica seedlings was the highest with 82.4% at a sowing depth of 1.5 cm, and it decreased significantly at a depth of >3.0 cm. This study provides information on methods to break dormancy and promote the germination of T. thianschanica seeds.


Oecologia ◽  
2003 ◽  
Vol 136 (2) ◽  
pp. 252-260 ◽  
Author(s):  
Susanne Schwinning ◽  
Benjamin I. Starr ◽  
James R. Ehleringer

Author(s):  
Monika Agacka-Mołdoch ◽  
Mian Abdur Rehman Arif ◽  
Ulrike Lohwasser ◽  
Teresa Doroszewska ◽  
Ramsey S. Lewis ◽  
...  

AbstractGenetic mapping of seed germination traits has been performed with many plant species. In tobacco, however, investigations are rare. In the present study, a bi-parental mapping population consisting of 118 doubled haploid lines and derived from a cross between ‘Beinhart-1000’ and ‘Hicks’ was investigated. Four germination-related traits, total germination (TG), normal germination (NG), time to reach 50% of total germination (T50), and the area under the curve after 200 h of germination (AUC) were considered by examining seeds either untreated or after a moderate controlled deterioration (CD). Quantitative trait loci were found for all traits distributed on 11 out of the 24 linkage groups. It was demonstrated that, as in many other species, germination-related traits are very complex and under polygenic control.


2016 ◽  
Vol 27 (3) ◽  
pp. 637-645 ◽  
Author(s):  
Borja Jiménez-Alfaro ◽  
Fernando A.O. Silveira ◽  
Alessandra Fidelis ◽  
Peter Poschlod ◽  
Lucy E. Commander

2019 ◽  
Vol 9 (4) ◽  
pp. 2160-2170 ◽  
Author(s):  
Liming Lai ◽  
Lijun Chen ◽  
Mingqing Zheng ◽  
Lianhe Jiang ◽  
Jihua Zhou ◽  
...  

Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


2019 ◽  
Vol 43 (5) ◽  
pp. 437-446
Author(s):  
ABDUSALAM Aysajan ◽  
ABULA Dilinaer ◽  
Kai ZHANG ◽  
TUERXUN Maireyemugu ◽  
ABDULRASHID Kadir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document