ephemeral species
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 1)

2020 ◽  
Vol 30 (1) ◽  
pp. 37-44
Author(s):  
Jannathan Mamut ◽  
Cai-Yun Zhang ◽  
Dun-Yan Tan ◽  
Carol C. Baskin ◽  
Jerry M. Baskin

AbstractOnly a few studies have been performed on seed germination of perennial ephemeral species native to the cold deserts of central Asia. We hypothesized that seeds of the cold desert perennial ephemeral Leontice incerta exhibit versatility in the timing of germination, that is, having the capacity to germinate at any time in summer, autumn and next spring. At dispersal in late May, only about 30% of the seeds could germinate; thus, a high percentage of the seeds was dormant. Seeds had a fully developed embryo, and dry storage, cold stratification, warm stratification and gibberellin promoted germination; we concluded that they have non-deep physiological dormancy. Seeds buried under natural conditions during summer germinated to 57–86% in autumn (late October) when exhumed and incubated at 5/2–25/15°C. However, seeds were sown in soil exposed to natural temperature and (low) precipitation did not germinate until next spring when the soil was moist. Thus, like various cold desert annuals, seeds of the perennial L. incerta can germinate in summer, autumn and next spring, depending on the availability of soil moisture (rainfall). Rainfall in cold deserts can play an important role in shaping seed germination traits of desert plants.


La Granja ◽  
2020 ◽  
Vol 31 (1) ◽  
pp. 47-55
Author(s):  
Nayeli Martinez ◽  
Erick De la Barrera

The environmental requirements leading to germination were determined by three common species found during the June-October 2009 rainy season in a peri-urban site from Morelia, Michoacan, Mexico, where the construction of a campus of the Universidad Nacional Autonoma de Mexico (UNAM) was underway. In particular, we evaluated responses in the laboratory to low-temperature stratification, day/night air temperature, and water potential for the native Onagraceae Lopezia racemosa and Ludwigia octovalvis, and the exotic Polygonaceae Rumex crispus. Low-temperature stratification had no effect on germination by L. racemosa, for which maximum germination averaging 88% was optimal at 25/15 and 30/20 ºC. Germination at 21 d was halved at –0.5 MPa and completely inhibited at –1.0 MPa. The seeds of L. octovalvis were also insensitive to low temperature stratification and their germination never exceeded 70%, with the two highest temperatures of 30/20 and 35/25 ºC being the optimum. For this species germination was maximal at 0.0 MPa, decreasing significantly under every treatment with a minimum germination of 21% for seeds incubated at –0.1 MPa. Germination for the exotic R. crispus was delayed by low-temperature stratification, although all its seeds germinated regardless of the temperature or water potential treatment. While the environmental requirements for germination of ephemeral species often match the typical climate of their growing season, the differential responses found for the species considered in the present study provide some insight into the mechanisms leading to changes in species composition for communities from disturbed environments, including the displacement of native species and the proliferation of exotic, potentially invasive plants.


2020 ◽  
Vol 1 (383) ◽  
pp. 33-41 ◽  
Author(s):  
G. J. Sultangazina ◽  
А. N. Kuprijanov ◽  
О. А. Kuprijanov ◽  
R. S. Beyshov

The current article presents the results of the study made on Adonis vernalis L. coenoflora of Northern Kazakhstan. The materials have been obtained in the course of field research considering the literary data. The list of Adonis vernalis L. flora discovered in Northern Kazakhstan is based on detailed route studies. The coenoflora of Adonis vernalis L. in Northern Kazakhstan includes 140 species belonging to 31 families and 96 genera. The leading families are Artemisia, Veronica, Achillea, Galatella, Lathyrus, Potentilla, Seseli, Silene. The majority of species belongs to perennial species, annuals and biennials are represented by six species, and there is only one ephemeral species. Woody and semi-woody plants are represented by three trees, five shrubs and one semishrub. Among the herbaceous plants there are more long-rooted and stem-rooted species. The coenoflora mainly consists of mesophytes (68 species) and xeromesophytes (57 species). There are 15 species of xerophytes, which makes 10,7%. A little number of xerophytes proves meadow and meadow-steppe nature of the coenoflora.


Paleobiology ◽  
2020 ◽  
Vol 46 (1) ◽  
pp. 123-135
Author(s):  
James S. Crampton ◽  
Roger A. Cooper ◽  
Michael Foote ◽  
Peter M. Sadler

AbstractWe document a positive and strong correlation between speciation and extinction rates in the Paleozoic zooplankton graptoloid clade, between 481 and 419 Ma. This correlation has a magnitude of ~0.35–0.45 and manifests at a temporal resolution of <50 kyr and, for part of our data set, <25 kyr. It cannot be explained as an artifact of the method used to measure rates, sampling bias, bias resulting from construction of the time series, autocorrelation, underestimation of species durations, or undetected phyletic evolution. Correlations are approximately equal during the Ordovician and Silurian, despite the very different speciation and extinction regimes prevailing during these two periods, and correlation is strongest in the shortest-lived cohorts of species.We infer that this correlation reflects approximately synchronous coupling of speciation and extinction in the graptoloids on timescales of a few tens of thousands of years. Almost half of graptoloid species in our data set have durations of <0.5 Myr, and previous studies have demonstrated that, during times of background extinction, short-lived species were selectively targeted by extinction. These observations may be consistent with the model of ephemeral speciation, whereby new species are inferred to form constantly and at high rate, but most of them disappear rapidly through extinction or reabsorption into the ancestral lineage. Diversity dependence with a lag of ~1 Myr, also documented elsewhere, may reflect a subsequent and relatively slow, competitive dynamic that governed those species that dispersed beyond their originating water mass and escaped the ephemeral species filter.


Kew Bulletin ◽  
2019 ◽  
Vol 74 (4) ◽  
Author(s):  
Yuxi Liang ◽  
Sylvia M. Phillips ◽  
Martin Cheek ◽  
Isabel Larridon

SummaryMesanthemum is a genus comprising 16 species in the family Eriocaulaceae and is native to Africa and Madagascar. Eriocaulaceae are characterised by a basal tuft or rosette of narrow leaves and small flowers in heads. Mesanthemum can be recognised by diplostemonous flowers and fused glandular pistillate petals. While most Mesanthemum species are large perennial herbs, two small ephemeral species from West Africa, M. albidum and M. auratum differ from the rest of the genus by their shorter life cycle, smaller size, simpler floral structures and different seed surface patterning. A molecular phylogenetic study, morphological comparisons and scanning electron microscope (SEM) examination of seed coat sculpture were carried out to determine whether they should be separated as a new genus. The molecular results indicate that the two ephemeral species are nested in the Mesanthemum clade. However, they are not closely related to each other. All species of Mesanthemum are here revised, including the description of a new species M. alenicola from Equatorial Guinea. An identification key is provided, together with taxonomic descriptions, synonymy and notes. Images of the seeds as seen under SEM are provided where available. Lectotypifications are provided for Mesanthemum albidum, M. bennae, M. pilosum, M. prescottianum, M. pubescens and M. variabile. A neotype is selected for M. rutenbergianum, which is synonymised with M. pubescens.


2017 ◽  
Author(s):  
D. Nayeli Martínez ◽  
Erick de la Barrera

We determined the environmental requirements leading to germination by three common species found during the summer rainy season in a peri-urban site where construction of a university campus was underway. In particular, we evaluated laboratory responses to low-temperature stratification, day/night air temperature, and water potential for the native Onagraceae Lopezia racemosa and Ludwigia octovalvis, and the exotic Polygonaceae Rumex crispus. Low-temperature stratification had no effect on germination by L. racemosa, for which maximum germination averaging 88% was optimal at 25/15 and 30/20 ºC. Germination at 21 d was halved at –0.5 MPa and completely inhibited at –1.0 MPa. The seeds of L. octovalvis were also insensitive to low temperature stratification and their germination never exceeded 70%, with the two highest temperatures of 30/20 and 35/25 ºC being the optimum. For this species germination was maximal at 0.0 MPa, decreasing significantly under every treatment with a minimum germination of 21% for seeds incubated at –0.1 MPa. Germination for the exotic R. crispus was delayed by low-temperature stratification, although all of its seeds germinated regardless of the temperature or water potential treatment. While the environmental requirements for germination of ephemeral species often match the typical climate of their growing season, the differential responses found for the species considered in the present study provide some insight into the mechanisms leading to changes in species composition for communities from disturbed environments, including the displacement of native species and the proliferation of exotic, potentially invasive, plants.


2017 ◽  
Author(s):  
D. Nayeli Martínez ◽  
Erick de la Barrera

We determined the environmental requirements leading to germination by three common species found during the summer rainy season in a peri-urban site where construction of a university campus was underway. In particular, we evaluated laboratory responses to low-temperature stratification, day/night air temperature, and water potential for the native Onagraceae Lopezia racemosa and Ludwigia octovalvis, and the exotic Polygonaceae Rumex crispus. Low-temperature stratification had no effect on germination by L. racemosa, for which maximum germination averaging 88% was optimal at 25/15 and 30/20 ºC. Germination at 21 d was halved at –0.5 MPa and completely inhibited at –1.0 MPa. The seeds of L. octovalvis were also insensitive to low temperature stratification and their germination never exceeded 70%, with the two highest temperatures of 30/20 and 35/25 ºC being the optimum. For this species germination was maximal at 0.0 MPa, decreasing significantly under every treatment with a minimum germination of 21% for seeds incubated at –0.1 MPa. Germination for the exotic R. crispus was delayed by low-temperature stratification, although all of its seeds germinated regardless of the temperature or water potential treatment. While the environmental requirements for germination of ephemeral species often match the typical climate of their growing season, the differential responses found for the species considered in the present study provide some insight into the mechanisms leading to changes in species composition for communities from disturbed environments, including the displacement of native species and the proliferation of exotic, potentially invasive, plants.


Sign in / Sign up

Export Citation Format

Share Document