scholarly journals Hamiltonicity in random directed graphs is born resilient

2020 ◽  
Vol 29 (6) ◽  
pp. 900-942 ◽  
Author(s):  
Richard Montgomery

AbstractLet $\{D_M\}_{M\geq 0}$ be the n-vertex random directed graph process, where $D_0$ is the empty directed graph on n vertices, and subsequent directed graphs in the sequence are obtained by the addition of a new directed edge uniformly at random. For each $$\varepsilon > 0$$ , we show that, almost surely, any directed graph $D_M$ with minimum in- and out-degree at least 1 is not only Hamiltonian (as shown by Frieze), but remains Hamiltonian when edges are removed, as long as at most $1/2-\varepsilon$ of both the in- and out-edges incident to each vertex are removed. We say such a directed graph is $(1/2-\varepsilon)$ -resiliently Hamiltonian. Furthermore, for each $\varepsilon > 0$ , we show that, almost surely, each directed graph $D_M$ in the sequence is not $(1/2+\varepsilon)$ -resiliently Hamiltonian.This improves a result of Ferber, Nenadov, Noever, Peter and Škorić who showed, for each $\varepsilon > 0$ , that the binomial random directed graph $D(n,p)$ is almost surely $(1/2-\varepsilon)$ -resiliently Hamiltonian if $p=\omega(\log^8n/n)$ .

2015 ◽  
Vol 24 (6) ◽  
pp. 873-928 ◽  
Author(s):  
ANDREW TREGLOWN

We say that a (di)graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. The seminal Hajnal–Szemerédi theorem characterizes the minimum degree that ensures a graph G contains a perfect Kr-packing. In this paper we prove the following analogue for directed graphs: Suppose that T is a tournament on r vertices and G is a digraph of sufficiently large order n where r divides n. If G has minimum in- and outdegree at least (1−1/r)n then G contains a perfect T-packing.In the case when T is a cyclic triangle, this result verifies a recent conjecture of Czygrinow, Kierstead and Molla [4] (for large digraphs). Furthermore, in the case when T is transitive we conjecture that it suffices for every vertex in G to have sufficiently large indegree or outdegree. We prove this conjecture for transitive triangles and asymptotically for all r ⩾ 3. Our approach makes use of a result of Keevash and Mycroft [10] concerning almost perfect matchings in hypergraphs as well as the Directed Graph Removal Lemma [1, 6].


2019 ◽  
Vol 28 (12) ◽  
pp. 1950076
Author(s):  
Thomas Fleming ◽  
Joel Foisy

A directed graph [Formula: see text] is intrinsically linked if every embedding of that graph contains a nonsplit link [Formula: see text], where each component of [Formula: see text] is a consistently oriented cycle in [Formula: see text]. A tournament is a directed graph where each pair of vertices is connected by exactly one directed edge. We consider intrinsic linking and knotting in tournaments, and study the minimum number of vertices required for a tournament to have various intrinsic linking or knotting properties. We produce the following bounds: intrinsically linked ([Formula: see text]), intrinsically knotted ([Formula: see text]), intrinsically 3-linked ([Formula: see text]), intrinsically 4-linked ([Formula: see text]), intrinsically 5-linked ([Formula: see text]), intrinsically [Formula: see text]-linked ([Formula: see text]), intrinsically linked with knotted components ([Formula: see text]), and the disjoint linking property ([Formula: see text]). We also introduce the consistency gap, which measures the difference in the order of a graph required for intrinsic [Formula: see text]-linking in tournaments versus undirected graphs. We conjecture the consistency gap to be nondecreasing in [Formula: see text], and provide an upper bound at each [Formula: see text].


Author(s):  
Gábor Kusper ◽  
Csaba Biró

In a previous paper we defined the Black-and-White SAT problem which has exactly two solutions, where each variable is either true or false. We showed that Black-and-White $2$-SAT problems represent strongly connected directed graphs. We presented also the strong model of communication graphs. In this work we introduce two new models, the weak model, and the Balatonbogl\'{a}r model of communication graphs. A communication graph is a directed graph, where no self loops are allowed. In this work we show that the weak model of a strongly connected communication graph is a Black-and-White SAT problem. We prove a powerful theorem, the so called Transitions Theorem. This theorem states that for any model which is between the strong and the weak model, we have that this model represents strongly connected communication graphs as Blask-and-White SAT problems. We show that the Balatonbogl\'{a}r model is between the strong and the weak model, and it generates $3$-SAT problems, so the Balatonbogl\'{a}r model represents strongly connected communication graphs as Black-and-White $3$-SAT problems. Our motivation to study these models is the following: The strong model generates a $2$-SAT problem from the input directed graph, so it does not give us a deep insight how to convert a general SAT problem into a directed graph. The weak model generates huge models, because it represents all cycles, even non-simple cycles, of the input directed graph. We need something between them to gain more experience. From the Balatonbogl\'{a}r model we learned that it is enough to have a subset of a clause, which represents a cycle in the weak model, to make the Balatonbogl\'{a}r model more compact. We still do not know how to represent a SAT problem as a directed graph, but this work gives a strong link between two prominent fields of formal methods: SAT problem and directed graphs.


Author(s):  
Matt Baxter ◽  
Simon Polovina ◽  
Wim Laurier ◽  
Mark von Rosing

AbstractEnterprise Architecture (EA) metamodels align an organisation’s business, information and technology resources so that these assets best meet the organisation’s purpose. The Layered EA Development (LEAD) Ontology enhances EA practices by a metamodel with layered metaobjects as its building blocks interconnected by semantic relations. Each metaobject connects to another metaobject by two semantic relations in opposing directions, thus highlighting how each metaobject views other metaobjects from its perspective. While the resulting two directed graphs reveal all the multiple pathways in the metamodel, more desirable would be to have one directed graph that focusses on the dependencies in the pathways. Towards this aim, using CG-FCA (where CG refers to Conceptual Graph and FCA to Formal Concept Analysis) and a LEAD case study, we determine an algorithm that elicits the active as opposed to the passive semantic relations between the metaobjects resulting in one directed graph metamodel. We also identified the general applicability of our algorithm to any metamodel that consists of triples of objects with active and passive relations.


Algorithmica ◽  
2021 ◽  
Author(s):  
Fedor V. Fomin ◽  
Petr A. Golovach ◽  
William Lochet ◽  
Pranabendu Misra ◽  
Saket Saurabh ◽  
...  

AbstractWe initiate the parameterized complexity study of minimum t-spanner problems on directed graphs. For a positive integer t, a multiplicative t-spanner of a (directed) graph G is a spanning subgraph H such that the distance between any two vertices in H is at most t times the distance between these vertices in G, that is, H keeps the distances in G up to the distortion (or stretch) factor t. An additive t-spanner is defined as a spanning subgraph that keeps the distances up to the additive distortion parameter t, that is, the distances in H and G differ by at most t. The task of Directed Multiplicative Spanner is, given a directed graph G with m arcs and positive integers t and k, decide whether G has a multiplicative t-spanner with at most $$m-k$$ m - k arcs. Similarly, Directed Additive Spanner asks whether G has an additive t-spanner with at most $$m-k$$ m - k arcs. We show that (i) Directed Multiplicative Spanner admits a polynomial kernel of size $$\mathcal {O}(k^4t^5)$$ O ( k 4 t 5 ) and can be solved in randomized $$(4t)^k\cdot n^{\mathcal {O}(1)}$$ ( 4 t ) k · n O ( 1 ) time, (ii) the weighted variant of Directed Multiplicative Spanner can be solved in $$k^{2k}\cdot n^{\mathcal {O}(1)}$$ k 2 k · n O ( 1 ) time on directed acyclic graphs, (iii) Directed Additive Spanner is $${{\,\mathrm{\mathsf{W}}\,}}[1]$$ W [ 1 ] -hard when parameterized by k for every fixed $$t\ge 1$$ t ≥ 1 even when the input graphs are restricted to be directed acyclic graphs. The latter claim contrasts with the recent result of Kobayashi from STACS 2020 that the problem for undirected graphs is $${{\,\mathrm{\mathsf{FPT}}\,}}$$ FPT when parameterized by t and k.


10.37236/3610 ◽  
2015 ◽  
Vol 22 (4) ◽  
Author(s):  
Louis DeBiasio ◽  
Theodore Molla

In 1960 Ghouila-Houri extended Dirac's theorem to directed graphs by proving that if $D$ is a directed graph on $n$ vertices with minimum out-degree and in-degree at least $n/2$, then $D$ contains a directed Hamiltonian cycle. For directed graphs one may ask for other orientations of a Hamiltonian cycle and in 1980 Grant initiated the problem of determining minimum degree conditions for a directed graph $D$ to contain an anti-directed Hamiltonian cycle (an orientation in which consecutive edges alternate direction). We prove that for sufficiently large even $n$, if $D$ is a directed graph on $n$ vertices with minimum out-degree and in-degree at least $\frac{n}{2}+1$, then $D$ contains an anti-directed Hamiltonian cycle. In fact, we prove the stronger result that $\frac{n}{2}$ is sufficient unless $D$ is one of two counterexamples. This result is sharp.


2017 ◽  
Vol 27 (03) ◽  
pp. 207-219
Author(s):  
A. Karim Abu-Affash ◽  
Paz Carmi ◽  
Anat Parush Tzur

In the strongly connected spanning subgraph ([Formula: see text]) problem, the goal is to find a minimum weight spanning subgraph of a strongly connected directed graph that maintains the strong connectivity. In this paper, we consider the [Formula: see text] problem for two families of geometric directed graphs; [Formula: see text]-spanners and symmetric disk graphs. Given a constant [Formula: see text], a directed graph [Formula: see text] is a [Formula: see text]-spanner of a set of points [Formula: see text] if, for every two points [Formula: see text] and [Formula: see text] in [Formula: see text], there exists a directed path from [Formula: see text] to [Formula: see text] in [Formula: see text] of length at most [Formula: see text], where [Formula: see text] is the Euclidean distance between [Formula: see text] and [Formula: see text]. Given a set [Formula: see text] of points in the plane such that each point [Formula: see text] has a radius [Formula: see text], the symmetric disk graph of [Formula: see text] is a directed graph [Formula: see text], such that [Formula: see text]. Thus, if there exists a directed edge [Formula: see text], then [Formula: see text] exists as well. We present [Formula: see text] and [Formula: see text] approximation algorithms for the [Formula: see text] problem for [Formula: see text]-spanners and for symmetric disk graphs, respectively. Actually, our approach achieves a [Formula: see text]-approximation algorithm for all directed graphs satisfying the property that, for every two nodes [Formula: see text] and [Formula: see text], the ratio between the shortest paths, from [Formula: see text] to [Formula: see text] and from [Formula: see text] to [Formula: see text] in the graph, is at most [Formula: see text].


2018 ◽  
Vol 6 ◽  
Author(s):  
ANDRZEJ CZYGRINOW ◽  
LOUIS DEBIASIO ◽  
THEODORE MOLLA ◽  
ANDREW TREGLOWN

The Hajnal–Szemerédi theorem states that for any positive integer $r$ and any multiple $n$ of $r$, if $G$ is a graph on $n$ vertices and $\unicode[STIX]{x1D6FF}(G)\geqslant (1-1/r)n$, then $G$ can be partitioned into $n/r$ vertex-disjoint copies of the complete graph on $r$ vertices. We prove a very general analogue of this result for directed graphs: for any positive integer $r$ with $r\neq 3$ and any sufficiently large multiple $n$ of $r$, if $G$ is a directed graph on $n$ vertices and every vertex is incident to at least $2(1-1/r)n-1$ directed edges, then $G$ can be partitioned into $n/r$ vertex-disjoint subgraphs of size $r$ each of which contain every tournament on $r$ vertices (the case $r=3$ is different and was handled previously). In fact, this result is a consequence of a tiling result for standard multigraphs (that is multigraphs where there are at most two edges between any pair of vertices). A related Turán-type result is also proven.


10.37236/1994 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Rani Hod ◽  
Marcin Krzywkowski

A team of $n$ players plays the following game. After a strategy session, each player is randomly fitted with a blue or red hat. Then, without further communication, everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. Visibility is defined by a directed graph; that is, vertices correspond to players, and a player can see each player to whom he is connected by an arc. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The team aims to maximize the probability of a win, and this maximum is called the hat number of the graph.Previous works focused on the hat problem on complete graphs and on undirected graphs. Some cases were solved, e.g., complete graphs of certain orders, trees, cycles, and bipartite graphs. These led Uriel Feige to conjecture that the hat number of any graph is equal to the hat number of its maximum clique.We show that the conjecture does not hold for directed graphs. Moreover, for every value of the maximum clique size, we provide a tight characterization of the range of possible values of the hat number. We construct families of directed graphs with a fixed clique number the hat number of which is asymptotically optimal. We also determine the hat number of tournaments to be one half.


Sign in / Sign up

Export Citation Format

Share Document