Aborted cardiac arrest during sport activity in a teenager diagnosed with short QT syndrome

2020 ◽  
Vol 30 (6) ◽  
pp. 886-889
Author(s):  
Mehmet G. Ramoğlu ◽  
Selen Karagözlü ◽  
Tayfun Uçar ◽  
Ercan Tutar

AbstractShort QT syndrome is a malignant repolarisation disorder characterised by short QT intervals. We present a previously asymptomatic 14-year-old male patient with negative family history, who suffered a sudden cardiac arrest while playing basketball and diagnosed with short QT syndrome to make emphasis on the fact that although very rare patients with this syndrome may experience cardiac arrest during exercise.

EP Europace ◽  
2021 ◽  
Author(s):  
Xuehui Fan ◽  
Guoqiang Yang ◽  
Jacqueline Kowitz ◽  
Firat Duru ◽  
Ardan M Saguner ◽  
...  

Abstract Cardiovascular diseases are the main cause of sudden cardiac death (SCD) in developed and developing countries. Inherited cardiac channelopathies are linked to 5–10% of SCDs, mainly in the young. Short QT syndrome (SQTS) is a rare inherited channelopathy, which leads to both atrial and ventricular tachyarrhythmias, syncope, and even SCD. International European Society of Cardiology guidelines include as diagnostic criteria: (i) QTc ≤ 340 ms on electrocardiogram, (ii) QTc ≤ 360 ms plus one of the follwing, an affected short QT syndrome pathogenic gene mutation, or family history of SQTS, or aborted cardiac arrest, or family history of cardiac arrest in the young. However, further evaluation of the QTc ranges seems to be required, which might be possible by assembling large short QT cohorts and considering genetic screening of the newly described pathogenic mutations. Since the mechanisms underlying the arrhythmogenesis of SQTS is unclear, optimal therapy for SQTS is still lacking. The disease is rare, unclear genotype–phenotype correlations exist in a bevy of cases and the absence of an international short QT registry limit studies on the pathophysiological mechanisms of arrhythmogenesis and therapy of SQTS. This leads to the necessity of experimental models or platforms for studying SQTS. Here, we focus on reviewing preclinical SQTS models and platforms such as animal models, heterologous expression systems, human-induced pluripotent stem cell-derived cardiomyocyte models and computer models as well as three-dimensional engineered heart tissues. We discuss their usefulness for SQTS studies to examine genotype–phenotype associations, uncover disease mechanisms and test drugs. These models might be helpful for providing novel insights into the exact pathophysiological mechanisms of this channelopathy and may offer opportunities to improve the diagnosis and treatment of patients with SQT syndrome.


2018 ◽  
Vol 18 ◽  
pp. 101-103
Author(s):  
Daisuke Wakatsuki ◽  
Yoshitaka Iso ◽  
Hiroshi Mase ◽  
Masaaki Kurata ◽  
Etsushi Kyuno ◽  
...  

2018 ◽  
Vol 28 (9) ◽  
pp. 1099-1105 ◽  
Author(s):  
Hitesh Agrawal ◽  
Carlos M. Mery ◽  
S. Kristen Sexson Tejtel ◽  
Charles D. Fraser ◽  
E. Dean McKenzie ◽  
...  

AbstractBackgroundAnomalous aortic origin of a coronary artery is the second leading cause of sudden cardiac arrest/death in young athletes in the United States of America. Limited data are available regarding family history in this patient population.MethodsPatients were evaluated prospectively from 12/2012 to 02/2017 in the Coronary Anomalies Program at Texas Children’s Hospital. Relevant family history included the presence of CHD, sudden cardiac arrest/death, arrhythmia/pacemaker use, cardiomyopathy, and atherosclerotic coronary artery disease before the age of 50 years. The presence of one or more of these in 1st- or 2nd-degree relatives was considered significant.ResultsOf 168 unrelated probands (171 patients total) included, 36 (21%) had significant family history involving 19 (53%) 1st-degree and 17 (47%) 2nd-degree relatives. Positive family history led to cardiology referral in nine (5%) patients and the presence of abnormal tests/symptoms in the remaining patients. Coronary anomalies in probands with positive family history were anomalous right (27), anomalous left (five), single right coronary artery (two), myocardial bridge (one), and anomalous circumflex coronary artery (one). Conditions present in their family members included sudden cardiac arrest/death (15, 42%), atherosclerotic coronary artery disease (14, 39%), cardiomyopathy (12, 33%), CHD (11, 31%), coronary anomalies (3, 8%), myocardial bridge (1, 3%), long-QT syndrome (2, 6%), and Wolff–Parkinson–White (1, 3%).ConclusionIn patients with anomalous aortic origin of a coronary artery and/or myocardial bridges, there appears to be familial clustering of cardiac diseases in approximately 20% of patients, half of these with early occurrence of sudden cardiac arrest/death in the family.


2008 ◽  
Vol 31 (6) ◽  
pp. 270-274 ◽  
Author(s):  
Akira Funada ◽  
Kenshi Hayashi ◽  
Hidekazu Ino ◽  
Noboru Fujino ◽  
Katsuharu Uchiyama ◽  
...  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
B Narasimhan ◽  
L Wu ◽  
C.H Lucas ◽  
K Bhatia ◽  
A Shah ◽  
...  

Abstract Background Mitral valve prolapse (MVP) is the most commonly encountered valvular pathology seen in 2–3% of the general population. Though traditionally regarded as a benign pathology, recent literature suggests that sudden cardiac death is significantly more common in these patients with estimates of 0.2–0.4%/year. The exact underlying mechanism of these higher rates of SCD remain poorly understood. In this study, we aim to identify predictors of sudden cardiac arrest (SCA) in an adolescent population. Methods We conducted a retrospective study using the AHRQ-HCUP National Inpatient Sample 2016-2017 for the years 2016-17. All patients (≤18 years) admitted with Mitral valve prolapse were identified using ICD-10 codes and further sub stratified based on presence or absence of sudden cardiac arrest (SCA). Baseline characteristics were obtained and multivariate regression analysis was utilized to identify potential predictors of SCA. Independent risk factors for in-hospital mortality were identified using a proportional hazards model. Complications were defined as per the Agency for Health Care Research and Quality guideline. Results We screened a total of 71,473,874 admissions in the NIS database to identify a total of 1,372 adolescent patients admitted with MVP in the years 2016–17. These patients were then sub-categorized based on presence or absence of SCA during the hospitalization. Our findings revealed that patients with SCA were generally slightly older (15y vs 13y, p=0.036, OR-1.1, p=0.007) and more likely female (83.3% vs 13%, p=0.227, OR – 3.55, p=0.57)). Interestingly, patients in the SCA cohort were noted to have almost 4 fold higher rates of Mitral regurgitation (66.6% vs 18.35%, p=0.008, OR-8.89, p=0.005) as well as family history of SCD (16.7% vs 4.1%, p=0.145, OR-4.65, p=0.14). Conclusions Presence of Mitral regurgitation and a family history of sudden cardiac death are associated with significantly higher rates of SCA in adolescent patients with mitral valve prolapse. Predictors of SCA in Adolescent MVP Funding Acknowledgement Type of funding source: None


ESC CardioMed ◽  
2018 ◽  
pp. 676-679
Author(s):  
Erol Tülümen ◽  
Martin Borggrefe

Short QT syndrome (SQTS) is a very rare, sporadic or autosomal dominant inherited channelopathy characterized by abnormally short QT intervals on the electrocardiogram and increased propensity to atrial and ventricular tachyarrhythmias and/or sudden cardiac death. Since its recognition as a distinct clinical entity in 2000, significant progress has been made in defining the clinical, molecular, and genetic basis of SQTS. To date, several causative gain-of-function mutations in potassium channel genes and loss-of-function mutations in calcium channel genes have been identified. The physiological consequence of these mutations is an accelerated repolarization, thus abbreviated action potentials and shortened QT interval with an increased inhomogeneity and dispersion of repolarization. Regarding other rare monogenetic arrhythmias, a genetic basis of atrial fibrillation was considered very unlikely until very recently. However, in the last decade the heritability of atrial fibrillation in the general population has been well described in several epidemiological studies. So far, more than 30 genes have been implicated in atrial fibrillation through candidate gene approach studies, and more than 25 loci were found to be associated with atrial fibrillation through genome-wide association studies. This genetic heterogeneity and the low prevalence of mutations in any single gene restrict the clinical utility of genetic screening in atrial fibrillation.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Malek M El Yaman ◽  
David J Tester ◽  
Argelia Medeiros Domingo ◽  
Carla M Haglund ◽  
Michael J Ackerman

Long QT syndrome (LQTS) is a heterogeneous group of channelopathies characterized by increased risk of potentially lethal ventricular arrhythmias. LQT1, LQT2, and LQT3 comprise 95% of genetically proven cases and exhibit a number of established genotype-phenotype correlations. The study aimed at examining the phenotypes of genotype-negative LQTS, accounting for ~25% of LQTS cases. An IRB-approved retrospective analysis was conducted on 56 patients (39 female, 25 ± 17 years) who, after genetic testing either in our sudden death genomics laboratory or with the commercially available Familion test, were negative for mutations in the 3 principal LQTS-susceptibility genes ( KCNQ1, KCNH2, and SCN5A), and the minor genes underlying LQT5 and LQT6. All had been diagnosed with LQTS, with a clinical diagnostic score of ≥ 3.5 or QTc ≥ 480 ms. The mean diagnostic score was 4.4 (95% CI 4.2 – 4.7); mean QTc was 525 ms (95% CI 508 – 543 ms). Two-thirds were symptomatic (syncope, cardiac arrest, and/or seizures) with exercise-triggered events in 10 (26%). Twenty-one (38%) had a family history of sudden cardiac arrest. ECG showed a T wave pattern suggestive of LQT1 in 32%, LQT2 in 43%, and LQT3 in 18%. In those with exercise-induced symptoms, the ECG was LQT2-like in 50% and LQT1-like in 30%. One patient had post-partum syncope with an LQT2-like ECG. None had an auditory trigger, but 3 patients, all with an LQT2-like ECG, had a family history of auditory-triggered events. One-third of the patients had received an ICD, 58% as secondary prevention. Over 2/3 were on beta-blockers. Among the 45 patients so far tested for mutations in minor LQTS-susceptibility genes, 2 had LQTS-causing mutations in ANKB (LQT4), 1 in SCN4B (LQT10), 1 in AKAP9 (LQT11) and 2 in SNTA1 (LQT12). Genotype-negative patients with a firm LQTS diagnosis show marked phenotypic heterogeneity, suggesting multiple underlying pathogenic pathways. Only a few patients have LQTS-causing mutations in minor genes after complete LQT1–12 genetic testing. Classifying genotype negative patients into LQT1-, LQT2-, or LQT3-like profiles may guide the discovery of novel genes encoding channel interacting proteins corresponding to those specific signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document