The Modernization of Landscapes during the Late Paleozoic-Early Mesozoic

2000 ◽  
Vol 6 ◽  
pp. 79-114 ◽  
Author(s):  
Hans Kerp

Since their first appearance in the Middle-Late Silurian, land plants have played an increasingly important role in shaping terrestrial ecosystems and landscapes. It is difficult to overestimate their role because they form the framework for terrestrial ecosystems, provide habitats for terrestrial animals, form an important part of the food chain, affect weathering processes and have a direct impact on soil formation, and, last but not least, play a primary role in the oxygen/carbon cycles.

1998 ◽  
Vol 353 (1365) ◽  
pp. 113-130 ◽  
Author(s):  
Thomas J. Algeo ◽  
Stephen E. Scheckler

The Devonian Period was characterized by major changes in both the terrestrial biosphere, e.g. the evolution of trees and seed plants and the appearance of multi–storied forests, and in the marine biosphere, e.g. an extended biotic crisis that decimated tropical marine benthos, especially the stromatoporoid–tabulate coral reef community. Teleconnections between these terrestrial and marine events are poorly understood, but a key may lie in the role of soils as a geochemical interface between the lithosphere and atmosphere/hydrosphere, and the role of land plants in mediating weathering processes at this interface. The effectiveness of terrestrial floras in weathering was significantly enhanced as a consequence of increases in the size and geographic extent of vascular land plants during the Devonian. In this regard, the most important palaeobotanical innovations were (1) arborescence (tree stature), which increased maximum depths of root penetration and rhizoturbation, and (2) the seed habit, which freed land plants from reproductive dependence on moist lowland habitats and allowed colonization of drier upland and primary successional areas. These developments resulted in a transient intensification of pedogenesis (soil formation) and to large increases in the thickness and areal extent of soils. Enhanced chemical weathering may have led to increased riverine nutrient fluxes that promoted development of eutrophic conditions in epicontinental seaways, resulting in algal blooms, widespread bottomwater anoxia, and high sedimentary organic carbon fluxes. Long–term effects included drawdown of atmospheric pCO 2 and global cooling, leading to a brief Late Devonian glaciation, which set the stage for icehouse conditions during the Permo–Carboniferous. This model provides a framework for understanding links between early land plant evolution and coeval marine anoxic and biotic events, but further testing of Devonian terrestrial–marine teleconnections is needed.


2021 ◽  
Author(s):  
A. L. Romero-Olivares ◽  
E. W. Morrison ◽  
A. Pringle ◽  
S. D. Frey

AbstractFungi are mediators of the nitrogen and carbon cycles in terrestrial ecosystems. Examining how nitrogen uptake and organic matter decomposition potential differs in fungi can provide insight into the underlying mechanisms driving fungal ecological processes and ecosystem functioning. In this study, we assessed the frequency of genes encoding for specific enzymes that facilitate nitrogen uptake and organic matter decomposition in 879 fungal genomes with fungal taxa grouped into trait-based categories. Our linked gene-trait data approach revealed that gene frequencies vary across and within trait-based groups and that trait-based categories differ in trait space. We present two examples of how this linked gene-trait approach can be used to address ecological questions. First, we show that this type of approach can help us better understand, and potentially predict, how fungi will respond to environmental stress. Specifically, we found that trait-based categories with high nitrogen uptake gene frequency increased in relative abundance when exposed to high soil nitrogen enrichment. Second, by comparing frequencies of nitrogen uptake and organic matter decomposition genes, we found that most ectomycorrhizal fungi in our dataset have similar gene frequencies to brown rot fungi. This demonstrates that gene-trait data approaches can shed light on potential evolutionary trajectories of life history traits in fungi. We present a framework for exploring nitrogen uptake and organic matter decomposition gene frequencies in fungal trait-based groups and provide two concise examples on how to use our framework to address ecological questions from a mechanistic perspective.


2010 ◽  
Vol 2 (5) ◽  
pp. 1-11
Author(s):  
Atreyee Sahana

Soil is the foundation of all life activities in terrestrial ecosystems. Soil micro arthropod groups (less than 2 mm in size) like Acari and Collembola comprise more than 90% of arthropod fauna in most soil types. They majorly help in soil formation by breaking up the organic matter and mixing it up with inorganic mineral components. Among them, various species of Collembola have been proved to be effective bioindicator tool to measure soil health either it is polluted or not by its several characteristics in temperate countries. Therefore, in today’s world where pollution in soil by various agents is a baffling issue like other environmental pollutions, these natural soil inhabitants can make a hope to measure the natural health of soil.


2019 ◽  
Vol 70 (7) ◽  
pp. 2463-2470
Author(s):  
Lucian Nita ◽  
Dorin Tarau ◽  
Simona Nita ◽  
Alina Heghes ◽  
Radu Bertici ◽  
...  

The purpose of current research is part of the current scientific work and practice regarding the accumulation of knowledge on the structure and characteristics of the edaphic envelope and its quality in order to establish measures for its improvement. The researched issue covers an area of 113940 ha (of which 77039 ha, 67.61% are agricultural land), located in the Poganis, Ramnei and Doclin hills, namely Barzavei Plain. The paper provides basic information and methodological elements regarding the classification and evaluation of soil resources, thus integrating itself in the broader field of complex studies of natural resources and their valorisation thus assuring the environmental protection. This research takes place at a time when there is a high demand of education in soil-related issues from its perspective as a basis for the existence of human communities, component and support of terrestrial ecosystems. From this perspective, the physico-geographic conditions of soil formation and evolution are briefly, but succinctly presented, mentioning the way in which the particularities of the area within the space taken into consideration, of only 113940 ha as a stretch, determine a great diversity of ecological conditions. They are generated by the variability of the factors (cosmic-atmospheric and telluric-edaphic), for which the main processes of formation and evolution have achieved a different development and intensity, the result of which are different genetic types of soils (related or totally different) in constant evolution and demanding specific improvement measures.


Palaios ◽  
2008 ◽  
Vol 23 (5) ◽  
pp. 267-269 ◽  
Author(s):  
J. L. Isbell ◽  
M. L. Fraiser ◽  
L. C. Henry

Sign in / Sign up

Export Citation Format

Share Document