Response of the Norepinephrine System to Antidepressant Drugs

CNS Spectrums ◽  
2001 ◽  
Vol 6 (8) ◽  
pp. 679-688 ◽  
Author(s):  
Steven T. Szabo ◽  
Pierre Blier

ABSTRACTEnvironmental stimuli and drugs affect the norepinephrine (NE) system and may be linked to the manifestation and treatment of anxiety and affective disorders. The activity of locus ceruleus NE neurons in the brainstem can alter the function offorebrain structures associated with several psychiatric disorders. In particular, NE neurons send and receive projections from sensory afferents, limbic areas, and cortical areas implicated in higher-order brain malfunctions and the symptomatology of anxiety and affective disorders. In turn, anxiolytic and antidepressant drugs are able to offset perturbations of NE activity and forebrain structures with a time course congruent with their therapeutic action. All antide-pressants, even the agents selective for other biogenic amines or peptides, act on the NE system. In the present review, the effects of antidepressants on NE neurons are summarized and applied to the treatment of neuropsychiatric disorders, with emphasis placed on mechanisms of action.

2017 ◽  
Author(s):  
Roel M. Willems ◽  
Franziska Hartung

Behavioral evidence suggests that engaging with fiction is positively correlated with social abilities. The rationale behind this link is that engaging with fictional narratives offers a ‘training modus’ for mentalizing and empathizing. We investigated the influence of the amount of reading that participants report doing in their daily lives, on connections between brain areas while they listened to literary narratives. Participants (N=57) listened to two literary narratives while brain activation was measured with fMRI. We computed time-course correlations between brain regions, and compared the correlation values from listening to narratives to listening to reversed speech. The between-region correlations were then related to the amount of fiction that participants read in their daily lives. Our results show that amount of fiction reading is related to functional connectivity in areas known to be involved in language and mentalizing. This suggests that reading fiction influences social cognition as well as language skills.


1961 ◽  
Vol 118 (4) ◽  
pp. 355-357 ◽  
Author(s):  
JANE E. OLTMAN ◽  
SAMUEL FRIEDMAN

2005 ◽  
Vol 94 (4) ◽  
pp. 2644-2652 ◽  
Author(s):  
Makoto Araki ◽  
Toshiki Nagayama ◽  
Jordanna Sprayberry

The lateral giant (LG)-mediated escape behavior of the crayfish habituates readily on repetitive sensory stimulation. Recent studies suggested that the biogenic amines serotonin and octopamine modulate the time course of recovery and/or re-depression of the LG response after habituation. However, little is known of how serotonin and octopamine effect LG habituation and what second-messenger cascades they may activate. To investigate the effect of biogenic amines on LG habituation, serotonin and octopamine were superfused before presenting repetitive sensory stimulation. Serotonin and octopamine increased the number of stimuli needed to habituate the LG response. Their effects were mimicked by mixed application of a cAMP analogue [8-(4-chlorophenylthio)-cAMP (CPT-cAMP)] and a phosphodiesterase inhibitor [3-isobutyl-1-methylxanthine (IBMX)] but not by a cGMP analogue (8-bromoguanosine 3′,5′-cyclic monophosphate). Perfusion of the adenylate cyclase inhibitor (SQ22536) abolished the effect of serotonin but not that of octopamine. To investigate the site of action of each biogenic amines in the neural circuit meditating LG escape, the effect of drugs on directly and indirectly elicited postsynaptic potentials in LG was investigated. Serotonin, octopamine, and a mixture of CPT-cAMP and IBMX increased both the direct and indirect synaptic inputs. Simultaneous application of SQ22536 abolished the effect of serotonin on both inputs but did not block the effect of octopamine. Direct injection of the cAMP analogue (Sp-isomer of adenosine-3′,5′-cyclic monophosphorothioate) into LG increased both the direct and indirect inputs to LG. These results indicate that serotonin mediates an increase in cAMP levels in LG, but octopamine acts independently of cAMP and cGMP.


2021 ◽  
Vol 22 (5) ◽  
pp. 2521
Author(s):  
Kinga K. Borowicz-Reutt

Depression coexists with epilepsy, worsening its course. Treatment of the two diseases enables the possibility of interactions between antidepressant and antiepileptic drugs. The aim of this review was to analyze such interactions in one animal seizure model—the maximal electroshock (MES) in mice. Although numerous antidepressants showed an anticonvulsant action, mianserin exhibited a proconvulsant effect against electroconvulsions. In most cases, antidepressants potentiated or remained ineffective in relation to the antielectroshock action of classical antiepileptic drugs. However, mianserin and trazodone reduced the action of valproate, phenytoin, and carbamazepine against the MES test. Antiseizure drug effects were potentiated by all groups of antidepressants independently of their mechanisms of action. Therefore, other factors, including brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) modulation, should be considered as the background for the effect of drug combinations.


2006 ◽  
Vol 12 (4) ◽  
pp. 256-264 ◽  
Author(s):  
I. Nicol Ferrier ◽  
Lindsey J. Ferrie ◽  
Karine A. Macritchie

New data have emerged over the past 10 years regarding the efficacy and mechanisms of action of lithium. This article briefly summarises the evidence for the use of lithium to treat affective disorders and psychosis, reviews its putative anti-suicidal effect, highlights new research on its mechanism of action and provides an update on some important side-effects and consequences of its use.


OALib ◽  
2014 ◽  
Vol 01 (05) ◽  
pp. 1-7
Author(s):  
Marc Fakhoury

2021 ◽  
Vol 14 (9) ◽  
pp. 894
Author(s):  
Johannes Kornhuber ◽  
Erich Gulbins

Major depressive disorder (MDD) is a common and severe mental disorder that is usually recurrent and has a high risk of suicide. This disorder manifests not only with psychological symptoms but also multiple changes throughout the body, including increased risks of obesity, diabetes, and cardiovascular disease. Peripheral markers of oxidative stress and inflammation are elevated. MDD is therefore best described as a multisystem whole-body disease. Pharmacological treatment with antidepressants usually requires several weeks before the desired effects manifest. Previous theories of depression, such as the monoamine or neurogenesis hypotheses, do not explain these characteristics well. In recent years, new mechanisms of action have been discovered for long-standing antidepressants that also shed new light on depression, including the sphingolipid system and the receptor for brain-derived neurotrophic factor (BDNF).


2019 ◽  
Vol 4 (2) ◽  
pp. 80-100
Author(s):  
R. A. Bekker ◽  
Yu. V. Bykov

Lithium is the first and the lightest in the series of alkali metals, to which, in addition to lithium, two very biologically important elements – sodium and potassium, as well as trace elements rubidium and cesium, belong. Despite its formal affiliation to the group of alkali metals, lithium, like many other chemical elements of the «atypical» second period of the periodic table (for example, boron), is more similar in its chemical properties not to its counterparts in the group, but to its «diagonal brother» – magnesium. As we will show in this article, the diagonal chemical similarity between lithium and magnesium is of great importance for understanding the mechanisms of its intracellular biochemical action. At the same time, the intragroup chemical similarity of lithium with sodium and potassium is more important for understanding the mechanisms of its absorption, its distribution in the body and its excretion. Despite the 70 years that have passed since John Cade’s discovery of the antimanic effect of lithium, the mechanisms of its therapeutic action are still not completely understood. In the end, it turns out that the mechanism of the therapeutic action of lithium is extremely complex, multicomponent, unique and not imitable. Certain aspects of the mechanism of its action may be compatible with the mechanisms of action of other mood stabilizers, or with the mechanisms of action of so-called «lithium-mimetics», such as ebselen. However, no other drug to date failed to fully reproduce the biochemical effect of lithium on the body.


Sign in / Sign up

Export Citation Format

Share Document