Core Helium Burning Evolution at 15 M⊙

1971 ◽  
Vol 2 (1) ◽  
pp. 23-24 ◽  
Author(s):  
J. W. Robertson

The existence of red supergiants such as those in the clusters h and χ Persei has puzzled stellar evolution theoreticians for some time. Suggested explanations for them have included stars in a stage of gravitational contraction to the main sequence, or between nuclear burnings, core helium burning stars, and stars burning carbon or oxygen in the core, but it is now generally accepted that most red supergiants are core helium burning stars.

2019 ◽  
Vol 625 ◽  
pp. A132 ◽  
Author(s):  
A. Schootemeijer ◽  
N. Langer ◽  
N. J. Grin ◽  
C. Wang

Context. The evolution of massive stars is strongly influenced by internal mixing processes such as semiconvection, convective core overshooting, and rotationally induced mixing. None of these processes are currently well constrained. Aims. We investigate models for massive stars in the Small Magellanic Cloud (SMC), for which stellar-wind mass loss is less important than for their metal-rich counterparts. We aim to constrain the various mixing efficiencies by comparing model results to observations. Methods. For this purpose, we use the stellar-evolution code MESA to compute more than 60 grids of detailed evolutionary models for stars with initial masses of 9…100 M⊙, assuming different combinations of mixing efficiencies of the various processes in each grid. Our models evolve through core hydrogen and helium burning, such that they can be compared with the massive main sequence and supergiant population of the SMC. Results. We find that for most of the combinations of the mixing efficiencies, models in a wide mass range spend core-helium burning either only as blue supergiants, or only as red supergiants. The latter case corresponds to models that maintain a shallow slope of the hydrogen/helium (H/He) gradient separating the core and the envelope of the models. Only a small part of the mixing parameter space leads to models that produce a significant number of blue and red supergiants, which are both in abundance in the SMC. Some of our grids also predict a cut-off in the number of red supergiants above log L/L⊙ = 5…5.5. Interestingly, these models contain steep H/He gradients, as is required to understand the hot, hydrogen-rich Wolf-Rayet stars in the SMC. We find that unless it is very fast, rotation has a limited effect on the H/He profiles in our models. Conclusions. While we use specific implementations of the considered mixing processes, they comprehensively probe the two first-order structural parameters, the core mass and the H/He gradient in the core-envelope interface. Our results imply that in massive stars, mixing during the main-sequence evolution leads to a moderate increase in the helium core masses, and also that the H/He gradients above the helium cores become very steep. Our model grids can be used to further refine the various mixing efficiencies with the help of future observational surveys of the massive stars in the SMC, and thereby help to considerably reduce the uncertainties in models of massive star evolution.


1974 ◽  
Vol 59 ◽  
pp. 109-111
Author(s):  
A. Maeder

In spite of the rather good agreement between the theory of stellar evolution and the observations, there exist some difficulties when one compares closely the sequences of open star clusters and the theoretical isochrones. Several, if not all, of the old open star clusters seem to be concerned, especially those which are accurately measured, namely Praesepe, NGC 2360, 752, 3680 and M67. The problem concerns the gap occuring in the HR diagram at the end of the phase of hydrogen burning in the core; it corresponds to the phase of hydrogen exhaustion (or of overall contraction). The sequence of M67 has been studied by Racine (1971) and Torres-Peimbert (1971). The well apparent gap is located farther from the zero-age main sequence than indicated by the models and the hook towards a larger Teff predicted during this phase is not observed. Differences in chemical composition may not be held responsible for these anomalies. From Torres-Peimbert's models, it may be assumed that neither solar type, nor super metal rich composition are able to reduce the discrepancies. As a further illustration, let us mention the case of NGC 752. In Table I, the main features related to the gap are examined: the disagreement, like in M67, essentially concern features 1 and 2. The observations are based on a recent study of Grenon and Mermillod (1973) and on Bell's data (1972). Bell has also mentioned the existence of discrepancies. As in M67, the gap is too far from the zero-age main sequence and does not present any sudden turning towards a larger Teff.


1994 ◽  
Vol 162 ◽  
pp. 67-68
Author(s):  
Frank M. Alberts

In the calculation of stellar models with the Cox–Stewart opacities no convective zones in the outer layers of massive stars appear. The new OPAL opacities (Rogers & Iglesias, 1992) show a significant bump in the opacity near temperatures of log T = 5.2. This opacity effect results in a small convective zone in the envelope of stars with mass ranging from 15 M⊙ to 150 M⊙, apart from possible convective zones caused by ionization. This was also briefly mentioned by Glatzel & Kiriakidis (1993). For stars on the main sequence this zone is small, about 1% of its radius on the zero age main sequence up to 7% at the onset of the core helium burning and contains a negligible amount of mass. For helium burning stars, however, this convective zone moves inward, keeping the same size but containing more and more mass.


2019 ◽  
Vol 621 ◽  
pp. L10 ◽  
Author(s):  
S. Portegies Zwart

We analyze the position of the two populations of blue stragglers in the globular cluster M30 in the Hertzsprung–Russell diagram. Both populations of blue stragglers are brighter than the cluster’s turn-off, but one population, the blue blue-stragglers, aligns along the zero-age main sequence whereas the other, red population is elevated in brightness (or color) by ∼0.75 mag. Based on stellar evolution and merger simulations we argue that the red population, which composes about 40% of the blue stragglers in M 30, has formed at a constant rate of ∼2.8 blue stragglers per gigayear over the last ∼10 Gyr. The blue population on the other hand formed in a burst that started ∼3.2 Gyr ago at a peak rate of 30 blue stragglers per gigayear with an e-folding time scale of 0.93 Gyr. We speculate that the burst resulted from the core collapse of the cluster at an age of about 9.8 Gyr, whereas the constantly formed population is the result of mass transfer and mergers through binary evolution. In this scenario, about half the binaries in the cluster effectively result in a blue straggler.


2021 ◽  
Vol 647 ◽  
pp. A187
Author(s):  
A. Noll ◽  
S. Deheuvels ◽  
J. Ballot

Context. The size of convective cores remains uncertain, despite their substantial influence on stellar evolution, and thus on stellar ages. The seismic modeling of young subgiants can be used to obtain indirect constraints on the core structure during main sequence, thanks to the high probing potential of mixed modes. Aims. We selected the young subgiant KIC10273246, observed by Kepler, based on its mixed-mode properties. We thoroughly modeled this star, with the aim of placing constraints on the size of its main-sequence convective core. A corollary goal of this study is to elaborate a modeling technique that is suitable for subgiants and can later be applied to a larger number of targets. Methods. We first extracted the parameters of the oscillation modes of the star using the full Kepler data set. To overcome the challenges posed by the seismic modeling of subgiants, we propose a method that is specifically tailored to subgiants with mixed modes and uses nested optimization. We then applied this method to perform a detailed seismic modeling of KIC10273246. Results. We obtain models that show good statistical agreements with the observations, both seismic and non-seismic. We show that including core overshooting in the models significantly improves the quality of the seismic fit, optimal models being found for αov = 0.15. Higher amounts of core overshooting strongly worsen the agreement with the observations and are thus firmly ruled out. We also find that having access to two g-dominated mixed modes in young subgiants allows us to place stronger constraints on the gradient of molecular weight in the core and on the central density. Conclusions. This study confirms the high potential of young subgiants with mixed modes to investigate the size of main-sequence convective cores. It paves the way for a more general study including the subgiants observed with Kepler, TESS, and eventually PLATO.


2013 ◽  
Vol 9 (S301) ◽  
pp. 205-212
Author(s):  
Hilding R. Neilson

AbstractBoth pulsation and mass loss are commonly observed in stars and are important ingredients for understanding stellar evolution and structure, especially for massive stars. There is a growing body of evidence that pulsation can also drive and enhance mass loss in massive stars and that pulsation-driven mass loss is important for stellar evolution. In this review, I will discuss recent advances in understanding pulsation-driven mass loss in massive main-sequence stars, classical Cepheids and red supergiants and present some challenges remaining.


1978 ◽  
Vol 80 ◽  
pp. 157-160
Author(s):  
Catherine A. Pilachowski ◽  
Walter K. Bonsack

The clump giants in old and middle-aged open clusters provide a sample of stars whose evolutionary state can be clearly identified as core helium burning (Cannon 1970). The evolutionary state of the Ba II stars, on the other hand, is at present undetermined. The enrichment of s-process elements in the atmospheres of these peculiar stars suggests that the stars have at least passed through double shell burning, where the heavy elements may be produced and mixed to the surface. The Ba II stars are, however, too faint to be associated with this phase of stellar evolution; the absolute magnitudes and temperatures are consistent with the core helium burning phase. The barium stars should then occur in the clumps of Population I clusters in similar proportion to their numbers among the field giants.


1988 ◽  
Vol 108 ◽  
pp. 17-30
Author(s):  
Catherine A. Pilachowski

Nature has filled the upper right quadrant of the Hertzsprung-Russell diagram with more varieties of peculiar stars and odd chemical compositions than even our most speculative observers and theorists could dream up. To bring some structure to this vast subject I will categorize the phenomena we observe according to our model of stellar evolution, dividing the stars among the first ascent of the giant branch and the core-helium burning phase, the asymptotic giant branch (double shell-burning) phase, and the post-AGB and pre-planetary nebula stars. The types of stars found in these three groups are summarized below.


Sign in / Sign up

Export Citation Format

Share Document