Plans for the Australian Synthesis Telescope

1976 ◽  
Vol 3 (1) ◽  
pp. 7-11 ◽  
Author(s):  
K. J. Wellington

A major requirement of modern radio astronomy is the attainment of the highest possible angular resolution. This high angular resolution should be matched by a high sensitivity and by spectral and polarization capabilities. Study and experience have shown that no form of telescope is more effective in this respect than the aperture synthesis type. The past few years have seen a growing realization amongst astronomers, both here and overseas, of the need for a new synthesis telescope able to observe the full southern sky. This realization has been stimulated by several factors:

1992 ◽  
Vol 10 (1) ◽  
pp. 71-73 ◽  
Author(s):  
R.G. Marson ◽  
T.R. Bedding ◽  
J.G. Robertson

AbstractThe technique of aperture synthesis is well developed in radio astronomy. When applied to the optical regime, aperture synthesis allows one to partially overcome the blurring effects of the atmosphere and increase the angular resolution of large telescopes to the diffraction limit. MAPPIT (Masked APerture-Plane Interference Telescope) is a multi-element interferometer which operates at the coude focus of the 3.9 m Anglo-Australian Telescope. This instrument has recently been reconfigured to operate in a dispersed mode so that simultaneous observations in a band of wavelengths are possible. We will discuss this instrument’s new mode and present observations of the double star δ Sco and an angular diameter of the previously unresolved red giant β Gru.


1989 ◽  
Vol 8 ◽  
pp. 551-552
Author(s):  
R.D. Ekers

At cm wavelengths aperture synthesis radio-telescopes (arrays of linked antennas which synthesize an image of the sky with high angular resolution) are now becoming the dominant astronomical research tool. Major new facilities such as the VLA are in full operation, others such as the Australia Telescope are nearing completion and a number of telescopes designed to form images in real time have been converted to operate in the aperture synthesis mode (e.g. MOST, Bologna Cross). See Napier et al. (1983) for a review of modern synthesis telescopes. The high resolution, sensitivity and freedom from confusion have led the aperture synthesis telescopes into very diverse astronomical applications.


2001 ◽  
Vol 7 (S2) ◽  
pp. 354-355
Author(s):  
Nestor J. Zaluzec ◽  
Katherine L. Smith

It has been long known that orientation effects in crystalline materials can influence characteristic x-ray emission and microanalysis1-7. High Angular Resolution Electron Channeling X-ray Spectroscopy (HARECXS)6-7. a variation of ALCHEMI4-5, has been used at ANL for the last few years to investigate the effects of channeling on quantitative XEDS analysis of materials. More recently we have also been using HARECXS to carefully measure elemental disordering in a number of systems and have found that it can be used very successfully to elucidate the various stages of disorder.Perovskite (nominally CaTiO3) is a host phase for actinides in various wasteforms for the immobilization of high level radioactive nuclear waste. Over geologic time, alpha decay damage of the actinides in perovskite will cause displacive effects that influence the dimensional and chemical stability of the wasteform. in the past, the progression of damage has been studied by monitoring changes in selected area electron diffraction (SAED) patterns with increasing dose (e.g. 11).


1994 ◽  
Vol 154 ◽  
pp. 603-608
Author(s):  
Raymond N. Smartt ◽  
Serge Koutchmy ◽  
Jacques-Clair NoëNs

Emission-line and K-coronal observations in the IR have the significant advantage of reduced sky brightness compared with the visible, while the effects of seeing are also reduced. Moreover, strong lines are available in the near-IR. Examples of the current capabilities of IR coronal observations using conventional Lyot coronagraphs are discussed briefly. Photometric measurements using the two IR lines of Fe XIII (10,747 Å and 10,798 Å), together with the Fe XIII 3,388 Å line, have provided a valuable electron-density diagnostic, but with low-angular-resolution. The 10,747 Å line has high intrinsic polarization. It has been used for extensive coronal magnetic field measurements, but only the direction of the field, and that with modest angular resolution, has been achieved due basically to flux limitations. Such studies suffer from the lack of high angular resolution and high photon flux. Moreover, the chromatic properties of a singlet objective lens preclude simultaneous observations at widely-differing wavelengths of the important inner coronal region. A coronagraph based on a mirror objective avoids such problems. Further, comparatively high-resolution and high-sensitivity arrays are now available with quantum efficiencies up to 90%. Reflecting coronagraphs with advanced arrays then provide the possibility of obtaining high-resolution images in the infrared to carry out a wide variety of studies crucial to many of the outstanding problems in coronal physics. A program for the development of reflecting coronagraphs is described briefly, with an emphasis on applications to IR coronal studies.


2002 ◽  
Vol 199 ◽  
pp. 251-258
Author(s):  
A.R. Taylor

Until recently, high angular resolution and high sensitivity surveys of the radio emission from the plane of our Galaxy were available only at frequencies of several GHz, where large single dish radio telescopes provide arcminute scale angular resolution. At these frequencies thermal radiation from HII regions and diffuse ionized gas comprise a major component of the Galactic emission. Advances in wide field interferometric imaging techniques now make it possible to carry out high sensitivity surveys of the Galaxy with arcminute scale angular resolution at 1.4 GHz and below. Over the past few years initial synthesis surveys have been made. More ambitious surveys that combined sensitive continuum observations with full polarimetry and images of the 3-dimensional structure of atomic hydrogen gas at pc scales are currently underway in the northern (DRAO) and southern (ATNF) hemispheres. The interstellar medium of the Galaxy contains structure on all spatial scales, and these surveys combined data from aperture synthesis telescopes and signal dish antennas to provide full spatial frequency coverage to the resolution limit. Preliminary results reveal wide-spread features and processes in the the interstellar medium that are not readily visible by other means, including, for example, unusual atomic hydrogen structures related to the vertical transfer of matter and radiation between the disk and halo of the Galaxy, Faraday rotation structures that allow study of the magnetic field and diffuse ionized component in the plane of the Galaxy, and a cold atomic phase of the neutral medium that may provide a link between global shock phenomena in the galaxy and the formation of molecular clouds.


1999 ◽  
Vol 191 ◽  
pp. 139-144 ◽  
Author(s):  
Margarita Karovska

I describe here results from high-angular resolution imaging studies of o Ceti (Mira). In 1983, we discovered that the atmosphere of the prototype of Mira-type variables is not symmetric. Since then, a number of multiwavelength high-angular resolution observations have confirmed the presence of asymmetries in Mira's atmosphere, and detected asymmetries in the atmospheres of other Mira-type variables. The high-angular resolution images of Mira obtained over the past fifteen years, including recent HST observations, show that the strength and shape of the asymmetries change as a function of wavelength and time. Plausible mechanisms for these asymmetries include hot spots, nonspherical pulsations, interaction with the companion and bipolar outflow. The presence of asymmetries in Miras could have serious impact on evolutionary models, and on the development of model atmospheres.


1998 ◽  
Vol 11 (2) ◽  
pp. 985-987
Author(s):  
L. I. Gurvits

Very Long Baseline Interferometry (VLBI) technique occupies a special place among tools for studying the Universe due to its record high angular resolution. The latter is in the inverse proportion to the length of interferometer baseline at any given wavelength. Until recently, the available angular resolution in radio domain of about 1 milliarcsecond at centimeter wavelengths was limited by the diameter of the Earth. However, many astrophysical problems require a higher angular resolution. The only way to achieve this at a given wavelength is to create an interferometer with the baseline larger than the Earth’s diameter by placing at least one telescope in space. In February 1997, the first dedicated Space VLBI mission, VLBI Space Observatory Program (VSOP), led by the Institute of Space and Astronautical Sciences (Japan) has been launched (Hirabayashi 1997). The VSOP mission opens a new dimension in the development of radio astronomy of extremely high angular resolution and will be followed by other Space VLBI missions. A review of scientific drives and technological challenges of the next generation Space VLBI mission have been discussed, for example, by Gurvits et al. (1996) and Ulvestad et al. (1997).


1994 ◽  
Vol 158 ◽  
pp. 493-495
Author(s):  
L. I. Gurvits

An approach providing an estimate of the cosmological deceleration parameter qo from VLBI survey data is described.


2007 ◽  
Vol 3 (S248) ◽  
pp. 387-390
Author(s):  
A. F. Zakharov

AbstractAccording to a revised schedule of the Russian Space Agency, in October 2008 the 10 m space telescope RadioAstron will be launched in a high eccentric orbit around the Earth. Acting together with ground based radio telescopes, the VLBI interferometer with a ground-space arm will operate. The interferometer will have extraordinary angular resolution of a few microarcsecond (μas) at the shortest wavelength (1.35 cm). Since typical angular scales for gravitational microlensing are at the μas level for cosmological locations of sources and microlenses, in principle there is a chance to resolve microimages and (or) at least, detect astrometrical shift of bright point like images. In particular, gravitationally lensed systems, such as B1600+434, where in radio band a signature of microlensing is found, look suitable for direct observations of microlensing, since microlensing with the RadioAstron interferometer may be detected in the future (considering its high angular resolution and a relatively high sensitivity and assuming a ground support by the advanced radio telescopes).


Sign in / Sign up

Export Citation Format

Share Document