The 20keV Break in the Diffuse X-ray Background Spectrum

1977 ◽  
Vol 3 (2) ◽  
pp. 131-132
Author(s):  
R. M. Hudson ◽  
R. M. Thomas ◽  
M. L. Duldig

In this paper we report an independent determination of the Location of the break (change in spectral index) in the spectrum of the diffuse X-ray background by applying a simple analysis technique to data already in the literature.

1999 ◽  
Vol 183 ◽  
pp. 200-209
Author(s):  
G. Hasinger

ROSAT deep and shallow surveys have provided an almost complete inventory of the constituents of the soft X-ray background which led to a population synthesis model for the whole X-ray background with interesting cosmological consequences. According to this model the X-ray background is the “echo” of mass accretion onto supermassive black holes, integrated over cosmic time. A new determination of the soft X-ray luminosity function of active galactic nuclei (AGN) is consistent with pure density evolution, and the comoving volume density of AGN at redshift 2–3 approaches that of local normal galaxies. This indicates that many larger galaxies contain black holes and it is likely that the bulk of the black holes was produced before most of the stars in the universe. However, only X-ray surveys in the harder energy bands, where the maximum of the energy density of the X-ray background resides, will provide the acid test of this picture.


1997 ◽  
Vol 166 ◽  
pp. 83-90 ◽  
Author(s):  
W.T. Sanders ◽  
R.J. Edgar ◽  
D.A. Liedahl ◽  
J.P. Morgenthaler

AbstractThe Diffuse X-ray Spectrometer (DXS) obtained spectra of the low energy X-ray (44 – 83 Å) diffuse background near the galactic plane from galactic longitudes 150° ≲ l ≲ 300° with ≲ 3 Å spectral resolution and ~ 15° angular resolution. Thus, DXS measured X-ray spectra that arise almost entirely from within the Local Bubble. The DXS spectra show emission lines and emission-line blends, indicating that the source of the X-ray emission is thermal – hot plasma in the Local Bubble. The measured spectra are not consistent with those predicted by standard coronal models, either with solar abundances or depleted abundances, over the temperature range 105 – 107 K. The measured spectra are also inconsistent with the predictions of various non-equilibrium models. A nearly acceptable fit to DXS spectra can be achieved using a hybrid model that combines the Raymond & Smith ionization balance calculation with recently calculated (by DAL) ionic emission lines.


2020 ◽  
Vol 498 (1) ◽  
pp. 821-834
Author(s):  
Benson T Guest ◽  
Samar Safi-Harb

ABSTRACT Pulsar wind nebulae (PWNe) are the synchrotron bubbles inflated by the rotational energy of a neutron star. Observing variability within them has previously been limited to cases of significant brightening, or the few instances where transient features are interpreted in terms of intrinsic motion or associated with variability from the pulsar. Jet and torus morphology are also only visible in cases of differing brightness with respect to the surrounding nebula and favourable alignment with our line of sight. Spectral map analysis involves binning observations with an adaptive algorithm to meet a signal limit and colouring the results based on the desired model parameter fits. Minute changes in spectral index become therefore apparent even in cases where brightness images alone do not suggest any underlying changes. We present a Chandra X-ray study of the PWNe in G21.5–0.9, Kes 75, G54.1+0.3, G11.2–0.3, and 3C 58, using archival observations accumulated over the ∼20-yr lifetime of the mission. With the spectral map analysis technique, we discover evidence for previously unknown variability opening a new window into viewing PWNe.


1989 ◽  
Vol 134 ◽  
pp. 175-176
Author(s):  
D. A. Schwartz ◽  
Y. Qian ◽  
W. H. Tucker

Several lines of evidence suggest that the x-ray spectra of quasars are not simple, exact power laws: 1. when Wilkes and Elvis (1987) analyzed quasars as power laws they found an absorption less than that due to our galaxy; 2. The mean 0.3 to 3.5 keV spectral index is steeper than the mean for the 2 to 20 keV range; 3. although several lines of evidence argue that AGN provide a significant portion (perhaps all) of the x-ray background, the diffuse background spectrum does not agree with the x-ray power-law indices measured for quasars or Seyfert galaxies. Schwartz and Tucker (1988) have suggested that all the above conflicts are reconciled if the slope in the Log(flux density) vs. Log(energy) plot flattens continuously with increasing energy. In this paper we utilize one particular parameterization suggested for the flux density, which we call the “log-slope” model: where f is the flux density, K a normalization parameter which is not of interest here, and a and b are the two parameters of our fit.


2005 ◽  
Vol 15 (03n04) ◽  
pp. 153-159
Author(s):  
YUANXUN ZHANG ◽  
FENG CHENG ◽  
YINSONG WANG ◽  
YONGPING ZHANG ◽  
GUILIN ZHANG ◽  
...  

In order to explore the distribution and the loss way of inorganic substances in bone and to provide scientific basis for prevention and therapy of osteoporosis, Proton Induced X-ray Emission (PIXE) method is used for the determination of elemental concentration in femoral head from five autopsies and seven patients with femoral neck broken, and Synchrotron Radiation X-ray Fluorescence (SRXRF) microprobe analysis technique is used to scan a slice of the femoral head from its periphery to its center, via cartilage, compact and spongy zones. The results show that the concentrations of P , Ca , Fe , Cu , Sr in a control group are higher than those in a patient group, but the concentrations of S , K , Zn , Mn are not significantly different. The quantitative computerized tomography of elemental distribution, such as Ca , P , K , Fe , Zn , Sr and Pb in bone slice tissue including cartilage, substantial compact and substantial spongy, is investigated. Combined with the correlations between P , K , Zn , Sr and Ca , the loss way of minerals and the physiological functions of some metal elements in bone are also discussed.


Sign in / Sign up

Export Citation Format

Share Document