A classification approach for detecting cross-lingual biomedical term translations

2015 ◽  
Vol 23 (1) ◽  
pp. 31-51 ◽  
Author(s):  
H. HAKAMI ◽  
D. BOLLEGALA

AbstractFinding translations for technical terms is an important problem in machine translation. In particular, in highly specialized domains such as biology or medicine, it is difficult to find bilingual experts to annotate sufficient cross-lingual texts in order to train machine translation systems. Moreover, new terms are constantly being generated in the biomedical community, which makes it difficult to keep the translation dictionaries up to date for all language pairs of interest. Given a biomedical term in one language (source language), we propose a method for detecting its translations in a different language (target language). Specifically, we train a binary classifier to determine whether two biomedical terms written in two languages are translations. Training such a classifier is often complicated due to the lack of common features between the source and target languages. We propose several feature space concatenation methods to successfully overcome this problem. Moreover, we study the effectiveness of contextual and character n-gram features for detecting term translations. Experiments conducted using a standard dataset for biomedical term translation show that the proposed method outperforms several competitive baseline methods in terms of mean average precision and top-k translation accuracy.

2014 ◽  
Vol 102 (1) ◽  
pp. 93-104
Author(s):  
Ramasamy Loganathan ◽  
Mareček David ◽  
Žabokrtský Zdenčk

Abstract This paper revisits the projection-based approach to dependency grammar induction task. Traditional cross-lingual dependency induction tasks one way or the other, depend on the existence of bitexts or target language tools such as part-of-speech (POS) taggers to obtain reasonable parsing accuracy. In this paper, we transfer dependency parsers using only approximate resources, i.e., machine translated bitexts instead of manually created bitexts. We do this by obtaining the the source side of the text from a machine translation (MT) system and then apply transfer approaches to induce parser for the target languages. We further reduce the need for the availability of labeled target language resources by using unsupervised target tagger. We show that our approach consistently outperforms unsupervised parsers by a bigger margin (8.2% absolute), and results in similar performance when compared with delexicalized transfer parsers.


2020 ◽  
Vol 34 (01) ◽  
pp. 115-122 ◽  
Author(s):  
Baijun Ji ◽  
Zhirui Zhang ◽  
Xiangyu Duan ◽  
Min Zhang ◽  
Boxing Chen ◽  
...  

Transfer learning between different language pairs has shown its effectiveness for Neural Machine Translation (NMT) in low-resource scenario. However, existing transfer methods involving a common target language are far from success in the extreme scenario of zero-shot translation, due to the language space mismatch problem between transferor (the parent model) and transferee (the child model) on the source side. To address this challenge, we propose an effective transfer learning approach based on cross-lingual pre-training. Our key idea is to make all source languages share the same feature space and thus enable a smooth transition for zero-shot translation. To this end, we introduce one monolingual pre-training method and two bilingual pre-training methods to obtain a universal encoder for different languages. Once the universal encoder is constructed, the parent model built on such encoder is trained with large-scale annotated data and then directly applied in zero-shot translation scenario. Experiments on two public datasets show that our approach significantly outperforms strong pivot-based baseline and various multilingual NMT approaches.


2016 ◽  
Vol 42 (2) ◽  
pp. 277-306 ◽  
Author(s):  
Pidong Wang ◽  
Preslav Nakov ◽  
Hwee Tou Ng

Most of the world languages are resource-poor for statistical machine translation; still, many of them are actually related to some resource-rich language. Thus, we propose three novel, language-independent approaches to source language adaptation for resource-poor statistical machine translation. Specifically, we build improved statistical machine translation models from a resource-poor language POOR into a target language TGT by adapting and using a large bitext for a related resource-rich language RICH and the same target language TGT. We assume a small POOR–TGT bitext from which we learn word-level and phrase-level paraphrases and cross-lingual morphological variants between the resource-rich and the resource-poor language. Our work is of importance for resource-poor machine translation because it can provide a useful guideline for people building machine translation systems for resource-poor languages. Our experiments for Indonesian/Malay–English translation show that using the large adapted resource-rich bitext yields 7.26 BLEU points of improvement over the unadapted one and 3.09 BLEU points over the original small bitext. Moreover, combining the small POOR–TGT bitext with the adapted bitext outperforms the corresponding combinations with the unadapted bitext by 1.93–3.25 BLEU points. We also demonstrate the applicability of our approaches to other languages and domains.


2016 ◽  
Vol 55 ◽  
pp. 209-248 ◽  
Author(s):  
Jörg Tiedemann ◽  
Zeljko Agić

How do we parse the languages for which no treebanks are available? This contribution addresses the cross-lingual viewpoint on statistical dependency parsing, in which we attempt to make use of resource-rich source language treebanks to build and adapt models for the under-resourced target languages. We outline the benefits, and indicate the drawbacks of the current major approaches. We emphasize synthetic treebanking: the automatic creation of target language treebanks by means of annotation projection and machine translation. We present competitive results in cross-lingual dependency parsing using a combination of various techniques that contribute to the overall success of the method. We further include a detailed discussion about the impact of part-of-speech label accuracy on parsing results that provide guidance in practical applications of cross-lingual methods for truly under-resourced languages.


Author(s):  
Zhenpeng Chen ◽  
Sheng Shen ◽  
Ziniu Hu ◽  
Xuan Lu ◽  
Qiaozhu Mei ◽  
...  

Sentiment classification typically relies on a large amount of labeled data. In practice, the availability of labels is highly imbalanced among different languages. To tackle this problem, cross-lingual sentiment classification approaches aim to transfer knowledge learned from one language that has abundant labeled examples (i.e., the source language, usually English) to another language with fewer labels (i.e., the target language). The source and the target languages are usually bridged through off-the-shelf machine translation tools. Through such a channel, cross-language sentiment patterns can be successfully learned from English and transferred into the target languages. This approach, however, often fails to capture sentiment knowledge specific to the target language. In this paper, we employ emojis, which are widely available in many languages, as a new channel to learn both the cross-language and the language-specific sentiment patterns. We propose a novel representation learning method that uses emoji prediction as an instrument to learn respective sentiment-aware representations for each language. The learned representations are then integrated to facilitate cross-lingual sentiment classification.


Author(s):  
Bin Lu ◽  
Benjamin K. Tsou ◽  
Tao Jiang ◽  
Jingbo Zhu ◽  
Oi Yee Kwong

The extracted parallel sentences and technical terms could be a good basis for further acquisition of term relations and the translation of monolingual ontologies, as well as for statistical machine translation systems and other cross-lingual information access applications.


Author(s):  
Herry Sujaini

Extended Word Similarity Based (EWSB) Clustering is a word clustering algorithm based on the value of words similarity obtained from the computation of a corpus. One of the benefits of clustering with this algorithm is to improve the translation of a statistical machine translation. Previous research proved that EWSB algorithm could improve the Indonesian-English translator, where the algorithm was applied to Indonesian language as target language.This paper discusses the results of a research using EWSB algorithm on a Indonesian to Minang statistical machine translator, where the algorithm is applied to Minang language as the target language. The research obtained resulted that the EWSB algorithm is quite effective when used in Minang language as the target language. The results of this study indicate that EWSB algorithm can improve the translation accuracy by 6.36%.


2017 ◽  
Vol 108 (1) ◽  
pp. 257-269 ◽  
Author(s):  
Nasser Zalmout ◽  
Nizar Habash

AbstractTokenization is very helpful for Statistical Machine Translation (SMT), especially when translating from morphologically rich languages. Typically, a single tokenization scheme is applied to the entire source-language text and regardless of the target language. In this paper, we evaluate the hypothesis that SMT performance may benefit from different tokenization schemes for different words within the same text, and also for different target languages. We apply this approach to Arabic as a source language, with five target languages of varying morphological complexity: English, French, Spanish, Russian and Chinese. Our results show that different target languages indeed require different source-language schemes; and a context-variable tokenization scheme can outperform a context-constant scheme with a statistically significant performance enhancement of about 1.4 BLEU points.


2020 ◽  
Vol 34 (05) ◽  
pp. 9274-9281
Author(s):  
Qianhui Wu ◽  
Zijia Lin ◽  
Guoxin Wang ◽  
Hui Chen ◽  
Börje F. Karlsson ◽  
...  

For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.


Author(s):  
Karunesh Kumar Arora ◽  
Shyam Sunder Agrawal

English and Hindi have significantly different word orders. English follows the subject-verb-object (SVO) order, while Hindi primarily follows the subject-object-verb (SOV) order. This difference poses challenges to modeling this pair of languages for translation. In phrase-based translation systems, word reordering is governed by the language model, the phrase table, and reordering models. Reordering in such systems is generally achieved during decoding by transposing words within a defined window. These systems can handle local reorderings, and while some phrase-level reorderings are carried out during the formation of phrases, they are weak in learning long-distance reorderings. To overcome this weakness, researchers have used reordering as a step in pre-processing to render the reordered source sentence closer to the target language in terms of word order. Such approaches focus on using parts-of-speech (POS) tag sequences and reordering the syntax tree by using grammatical rules, or through head finalization. This study shows that mere head finalization is not sufficient for the reordering of sentences in the English-Hindi language pair. It describes various grammatical constructs and presents a comparative evaluation of reorderings with the original and the head-finalized representations. The impact of the reordering on the quality of translation is measured through the BLEU score in phrase-based statistical systems and neural machine translation systems. A significant gain in BLEU score was noted for reorderings in different grammatical constructs.


Sign in / Sign up

Export Citation Format

Share Document