scholarly journals Improved Cardiorespiratory Fitness Is Associated with Increased Cortical Thickness in Mild Cognitive Impairment

2015 ◽  
Vol 21 (10) ◽  
pp. 757-767 ◽  
Author(s):  
Katherine Reiter ◽  
Kristy A. Nielson ◽  
Theresa J. Smith ◽  
Lauren R. Weiss ◽  
Alfonso J. Alfini ◽  
...  

AbstractCortical atrophy is a biomarker of Alzheimer’s disease (AD) that correlates with clinical symptoms. This study examined changes in cortical thickness from before to after an exercise intervention in mild cognitive impairment (MCI) and healthy elders. Thirty physically inactive older adults (14 MCI, 16 healthy controls) underwent MRI before and after participating in a 12-week moderate intensity walking intervention. Participants were between the ages of 61 and 88. Change in cardiorespiratory fitness was assessed using residualized scores of the peak rate of oxygen consumption (V̇O2peak) from pre- to post-intervention. Structural magnetic resonance images were processed using FreeSurfer v5.1.0. V̇O2peak increased an average of 8.49%, which was comparable between MCI and healthy elders. Overall, cortical thickness was stable except for a significant decrease in the right fusiform gyrus in both groups. However, improvement in cardiorespiratory fitness due to the intervention (V̇O2peak) was positively correlated with cortical thickness change in the bilateral insula, precentral gyri, precuneus, posterior cingulate, and inferior and superior frontal cortices. Moreover, MCI participants exhibited stronger positive correlations compared to healthy elders in the left insula and superior temporal gyrus. A 12-week moderate intensity walking intervention led to significantly improved fitness in both MCI and healthy elders. Improved V̇O2peak was associated with widespread increased cortical thickness, which was similar between MCI and healthy elders. Thus, regular exercise may be an especially beneficial intervention to counteract cortical atrophy in all risk groups, and may provide protection against future cognitive decline in both healthy elders and MCI. (JINS, 2015, 21, 757–767)

2020 ◽  
Vol 30 (5) ◽  
pp. 2948-2960 ◽  
Author(s):  
Nicholas M Vogt ◽  
Jack F Hunt ◽  
Nagesh Adluru ◽  
Douglas C Dean ◽  
Sterling C Johnson ◽  
...  

Abstract In Alzheimer’s disease (AD), neurodegenerative processes are ongoing for years prior to the time that cortical atrophy can be reliably detected using conventional neuroimaging techniques. Recent advances in diffusion-weighted imaging have provided new techniques to study neural microstructure, which may provide additional information regarding neurodegeneration. In this study, we used neurite orientation dispersion and density imaging (NODDI), a multi-compartment diffusion model, in order to investigate cortical microstructure along the clinical continuum of mild cognitive impairment (MCI) and AD dementia. Using gray matter-based spatial statistics (GBSS), we demonstrated that neurite density index (NDI) was significantly lower throughout temporal and parietal cortical regions in MCI, while both NDI and orientation dispersion index (ODI) were lower throughout parietal, temporal, and frontal regions in AD dementia. In follow-up ROI analyses comparing microstructure and cortical thickness (derived from T1-weighted MRI) within the same brain regions, differences in NODDI metrics remained, even after controlling for cortical thickness. Moreover, for participants with MCI, gray matter NDI—but not cortical thickness—was lower in temporal, parietal, and posterior cingulate regions. Taken together, our results highlight the utility of NODDI metrics in detecting cortical microstructural degeneration that occurs prior to measurable macrostructural changes and overt clinical dementia.


2010 ◽  
Vol 16 (5) ◽  
pp. 836-845 ◽  
Author(s):  
G. SÁNCHEZ-BENAVIDES ◽  
B. GÓMEZ-ANSÓN ◽  
M. QUINTANA ◽  
Y. VIVES ◽  
R.M. MANERO ◽  
...  

AbstractMild cognitive impairment (MCI) is considered a transitional state between normal aging and Alzheimer disease. Most MCI subjects present disturbances in multiple neuropsychological domains, including executive function. This study aimed at exploring frontal lobe cortical thinning in MCI and healthy controls, and its relationship with problem-solving abilities. Twenty-three MCI patients and 30 elderly controls underwent MRI and neuropsychological assessment. Cortical thickness was measured by means of FreeSurfer. Problem-solving was assessed by means of the Tower of London (TOL) task. MCI showed a global thinning of the cortex. With regard to specific regions of interest, a thinning in the left frontal lobe and the bilateral posterior cingulate gyri was found. Partial correlations, after controlling for age, education, Mini-Mental Status Examination, and non-frontal mean thickness revealed negative significant correlations between frontal lobe thickness and executive outcomes in the control group. This counterintuitive relationship was not observed in the MCI group, suggesting that the frontal cortical atrophy observed in MCI entails a specific pathology-related relationship with high-level executive outcomes that is qualitatively different from that observed in healthy aging. (JINS, 2010, 16, 836–845.)


2021 ◽  
pp. 1-22
Author(s):  
Galit Yogev-Seligmann ◽  
Tamir Eisenstein ◽  
Elissa Ash ◽  
Nir Giladi ◽  
Haggai Sharon ◽  
...  

Background: Aerobic training has been shown to promote structural and functional neurocognitive plasticity in cognitively intact older adults. However, little is known about the neuroplastic potential of aerobic exercise in individuals at risk of Alzheimer’s disease (AD) and dementia. Objective: We aimed to explore the effect of aerobic exercise intervention and cardiorespiratory fitness improvement on brain and cognitive functions in older adults with amnestic mild cognitive impairment (aMCI). Methods: 27 participants with aMCI were randomized to either aerobic training (n = 13) or balance and toning (BAT) control group (n = 14) for a 16-week intervention. Pre- and post-assessments included functional MRI experiments of brain activation during associative memory encoding and neural synchronization during complex information processing, cognitive evaluation using neuropsychological tests, and cardiorespiratory fitness assessment. Results: The aerobic group demonstrated increased frontal activity during memory encoding and increased neural synchronization in higher-order cognitive regions such as the frontal cortex and temporo-parietal junction (TPJ) following the intervention. In contrast, the BAT control group demonstrated decreased brain activity during memory encoding, primarily in occipital, temporal, and parietal areas. Increases in cardiorespiratory fitness were associated with increases in brain activation in both the left inferior frontal and precentral gyri. Furthermore, changes in cardiorespiratory fitness were also correlated with changes in performance on several neuropsychological tests. Conclusion: Aerobic exercise training may result in functional plasticity of high-order cognitive areas, especially, frontal regions, among older adults at risk of AD and dementia. Furthermore, cardiorespiratory fitness may be an important mediating factor of the observed changes in neurocognitive functions.


NeuroImage ◽  
2007 ◽  
Vol 36 (2) ◽  
pp. 289-297 ◽  
Author(s):  
Sang Won Seo ◽  
Kiho Im ◽  
Jong-Min Lee ◽  
Yun-Hee Kim ◽  
Sung Tae Kim ◽  
...  

2019 ◽  
Vol 21 ◽  
pp. 101617 ◽  
Author(s):  
Sue Kulason ◽  
Daniel J. Tward ◽  
Timothy Brown ◽  
Chelsea S. Sicat ◽  
Chin-Fu Liu ◽  
...  

Medicina ◽  
2020 ◽  
Vol 56 (10) ◽  
pp. 497
Author(s):  
Nauris Zdanovskis ◽  
Ardis Platkājis ◽  
Andrejs Kostiks ◽  
Guntis Karelis

Background and Objectives: A complex network of axonal pathways interlinks the human brain cortex. Brain networks are not distributed evenly, and brain regions making more connections with other parts are defined as brain hubs. Our objective was to analyze brain hub region volume and cortical thickness and determine the association with cognitive assessment scores in patients with mild cognitive impairment (MCI) and dementia. Materials and Methods: In this cross-sectional study, we included 11 patients (5 mild cognitive impairment; 6 dementia). All patients underwent neurological examination, and Montreal Cognitive Assessment (MoCA) test scores were recorded. Scans with a 3T MRI scanner were done, and cortical thickness and volumetric data were acquired using Freesurfer 7.1.0 software. Results: By analyzing differences between the MCI and dementia groups, MCI patients had higher hippocampal volumes (p < 0.05) and left entorhinal cortex thickness (p < 0.05). There was a significant positive correlation between MoCA test scores and left hippocampus volume (r = 0.767, p < 0.01), right hippocampus volume (r = 0.785, p < 0.01), right precuneus cortical thickness (r = 0.648, p < 0.05), left entorhinal cortex thickness (r = 0.767, p < 0.01), and right entorhinal cortex thickness (r = 0.612, p < 0.05). Conclusions: In our study, hippocampal volume and entorhinal cortex showed significant differences in the MCI and dementia patient groups. Additionally, we found a statistically significant positive correlation between MoCA scores, hippocampal volume, entorhinal cortex thickness, and right precuneus. Although other brain hub regions did not show statistically significant differences, there should be additional research to evaluate the brain hub region association with MCI and dementia.


2011 ◽  
Vol 7 ◽  
pp. S225-S225 ◽  
Author(s):  
Christian Spenger ◽  
Simon Eskildsen ◽  
Niclas Sjogren ◽  
Per Julin ◽  
Eric Westman ◽  
...  

2020 ◽  
Vol 16 (S4) ◽  
Author(s):  
McKenna E. Williams ◽  
Jeremy A. Elman ◽  
Linda K. McEvoy ◽  
Anders M. Dale ◽  
Christine Fennema‐Notestine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document