scholarly journals Attention and Regional Gray Matter Development in Very Preterm Children at Age 12 Years

2017 ◽  
Vol 23 (7) ◽  
pp. 539-550 ◽  
Author(s):  
Rachel E. Lean ◽  
Tracy R. Melzer ◽  
Samudragupta Bora ◽  
Richard Watts ◽  
Lianne J. Woodward

AbstractObjectives: This study examines the selective, sustained, and executive attention abilities of very preterm (VPT) born children in relation to concurrent structural magnetic resonance imaging (MRI) measures of regional gray matter development at age 12 years. Methods: A regional cohort of 110 VPT (≤32 weeks gestation) and 113 full term (FT) born children were assessed at corrected age 12 years on the Test of Everyday Attention-Children. They also had a structural MRI scan that was subsequently analyzed using voxel-based morphometry to quantify regional between-group differences in cerebral gray matter development, which were then related to attention measures using multivariate methods. Results: VPT children obtained similar selective (p=.85), but poorer sustained (p=.02) and executive attention (p=.01) scores than FT children. VPT children were also characterized by reduced gray matter in the bilateral parietal, temporal, prefrontal and posterior cingulate cortices, bilateral thalami, and left hippocampus; and increased gray matter in the occipital and anterior cingulate cortices (family-wise error–corrected p<.05). Poorer sustained auditory attention was associated with increased gray matter in the anterior cingulate cortex (p=.04). Poor executive shifting attention was associated with reduced gray matter in the right superior temporal cortex (p=.04) and bilateral thalami (p=.05). Poorer executive divided attention was associated with reduced gray matter in the occipital (p=.001), posterior cingulate (p=.02), and left temporal (p=.01) cortices; and increased gray matter in the anterior cingulate cortex (p=.001). Conclusions: Disturbances in regional gray matter development appear to contribute, at least in part, to the poorer attentional performance of VPT children at school age. (JINS, 2017, 23, 539–550)

2021 ◽  
Vol 5 ◽  
pp. 247054702110302
Author(s):  
Taylor D. Yeater ◽  
David J. Clark ◽  
Lorraine Hoyos ◽  
Pedro A. Valdes-Hernandez ◽  
Julio A. Peraza ◽  
...  

Background Autonomic dysregulation may lead to blunted sympathetic reactivity in chronic pain states. Autonomic responses are controlled by the central autonomic network (CAN). Little research has examined sympathetic reactivity and associations with brain CAN structures in the presence of chronic pain; thus, the present study aims to investigate how chronic pain influences sympathetic reactivity and associations with CAN brain region volumes. Methods Sympathetic reactivity was measured as change in skin conductance level (ΔSCL) between a resting reference period and walking periods for typical and complex walking tasks (obstacle and dual-task). Participants included 31 people with (n = 19) and without (n = 12) chronic musculoskeletal pain. Structural 3 T MRI was used to determine gray matter volume associations with ΔSCL in regions of the CAN (i.e., brainstem, amygdala, insula, and anterior cingulate cortex). Results ΔSCL varied across walking tasks (main effect p = 0.036), with lower ΔSCL in chronic pain participants compared to controls across trials 2 and 3 under the obstacle walking condition. ΔSCL during typical walking was associated with multiple CAN gray matter volumes, including brainstem, bilateral insula, amygdala, and right caudal anterior cingulate cortex (p’s < 0.05). The difference in ΔSCL from typical-to-obstacle walking were associated with volumes of the midbrain segment of the brainstem and anterior segment of the circular sulcus of the insula (p’s < 0.05), with no other significant associations. The difference in ΔSCL from typical-to-dual task walking was associated with the bilateral caudal anterior cingulate cortex, and left rostral cingulate cortex (p’s < 0.05). Conclusions Sympathetic reactivity is blunted during typical and complex walking tasks in persons with chronic pain. Additionally, blunted sympathetic reactivity is associated with CAN brain structure, with direction of association dependent on brain region. These results support the idea that chronic pain may negatively impact typical autonomic responses needed for walking performance via its potential impact on the brain.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Lotze ◽  
M. Domin ◽  
C. O. Schmidt ◽  
N. Hosten ◽  
H. J. Grabe ◽  
...  

Abstract Income and education are both elements of a person’s socioeconomic status, which is predictive of a broad range of life outcomes. The brain’s gray matter volume (GMV) is influenced by socioeconomic status and mediators related to an unhealthy life style. We here investigated two independent general population samples comprising 2838 participants (all investigated with the same MRI-scanner) with regard to the association of indicators of the socioeconomic status and gray matter volume. Voxel-based morphometry without prior hypotheses revealed that years of education were positively associated with GMV in the anterior cingulate cortex and net-equivalent income with gray matter volume in the hippocampus/amygdala region. Analyses of possible mediators (alcohol, cigarettes, body mass index (BMI), stress) revealed that the relationship between income and GMV in the hippocampus/amygdala region was partly mediated by self-reported stressors, and the association of years of education with GMV in the anterior cingulate cortex by BMI. These results corrected for whole brain effects (and therefore not restricted to certain brain areas) do now offer possibilities for more detailed hypotheses-driven approaches.


2006 ◽  
Vol 29 (2) ◽  
pp. 126-126 ◽  
Author(s):  
Oana Benga

In agreement with Blair, I favor the idea of dissociative patterns in cognitive performance, even more when it comes to development. However, such dissociations are present not only between fluid cognition and general intelligence, but also within fluid cognition itself. Heterogeneity of executive attention, even when indexed with a single paradigm, is further discussed in relation to anterior cingulate cortex.


1997 ◽  
Vol 77 (3) ◽  
pp. 1313-1324 ◽  
Author(s):  
M. Jueptner ◽  
K. M. Stephan ◽  
C. D. Frith ◽  
D. J. Brooks ◽  
R.S.J. Frackowiak ◽  
...  

Jueptner, M., K. M. Stephan, C. D. Frith, D. J. Brooks, R.S.J. Frackowiak, and R. E. Passingham. Anatomy of motor learning. I. Frontal cortex and attention to action. J. Neurophysiol. 77: 1313–1324, 1997. We used positron emission tomography to study new learning and automatic performance in normal volunteers. Subjects learned sequences of eight finger movements by trial and error. In a previous experiment we showed that the prefrontal cortex was activated during new learning but not during automatic performance. The aim of the present experiment was to see what areas could be reactivated if the subjects performed the prelearned sequence but were required to pay attention to what they were doing. Scans were carried out under four conditions. In the first the subjects performed a prelearned sequence of eight key presses; this sequence was learned before scanning and was practiced until it had become overlearned, so that the subjects were able to perform it automatically. In the second condition the subjects learned a new sequence during scanning. In a third condition the subjects performed the prelearned sequence, but they were required to attend to what they were doing; they were instructed to think about the next movement. The fourth condition was a baseline condition. As in the earlier study, the dorsal prefrontal cortex and anterior cingulate area 32 were activated during new learning, but not during automatic performance. The left dorsal prefrontal cortex and the right anterior cingulate cortex were reactivated when subjects paid attention to the performance of the prelearned sequence compared with automatic performance of the same task. It is suggested that the critical feature was that the subjects were required to attend to the preparation of their responses. However, the dorsal prefrontal cortex and the anterior cingulate cortex were activated more when the subjects learned a new sequence than they were when subjects simply paid attention to a prelearned sequence. New learning differs from the attention condition in that the subjects generated moves, monitored the outcomes, and remembered the responses that had been successful. All these are nonroutine operations to which the subjects must attend. Further analysis is needed to specify which are the nonroutine operations that require the involvement of the dorsal prefrontal and anterior cingulate cortex.


2018 ◽  
Vol 83 (9) ◽  
pp. S181
Author(s):  
Hisham Ibrahim ◽  
Kulikova Alexandra ◽  
A. John Rush ◽  
E. Sherwood Brown

2021 ◽  
Author(s):  
Mohammad Ali Salehinejad ◽  
Elham Ghanavati ◽  
Mohammed Harun Ar Rashid ◽  
Michael A Nitsche

Executive functions (EFs), or cognitive control, are higher-order cognitive functions needed for adaptive goal-directed behaviours and are significantly impaired in majority of neuropsychiatric disorders. Different models and approaches are proposed for describing how EFs are functionally organized in the brain. One popular and recently proposed organizing principle of EFs is the distinction between hot (i.e., reward or affective-related) vs cold (i.e., purely cognitive) domains of EFs. The prefrontal cortex is traditionally linked to EFs, but on the other hand, anterior and posterior cingulate cortices are involved in EFs as well. In this review, we first define EFs, their domains, and the appropriate methods for studying them. Second, we discuss how hot and cold EFs are linked to different areas of the prefrontal cortex. Third, we discuss the association of hot vs cold EFs with the cingulate cortex with a specific focus on anterior and posterior compartments. Finally, we propose a functional model for hot and cold EF organization in the brain with a specific focus on the fronto-cingular network. We also discuss clinical implications of hot vs cold cognition in major neuropsychiatric disorders (depression, schizophrenia, anxiety disorders, substance use disorder, attention-deficit hyperactivity disorder, and autism) and attempt to characterize their profile according to the functional dominance of hot-cold cognition. Our model proposes that the lateral prefrontal cortex, along with the dorsal anterior cingulate cortex are more relevant for cold EFs and the medial-orbital prefrontal cortex along with the ventral anterior cingulate cortex, and posterior cingulate cortex are more closely involved in hot EFs. This functional distinction, however, is not absolute and depends on several factors including task features, context, and the extent to which the measured function relies on cognition and emotion or both.


Sign in / Sign up

Export Citation Format

Share Document