scholarly journals Aurel von Richthofen, on tools, technology and society around the future of AI and architecture - Artificial Intelligence & Architecture Pavilion de l’Arsenal, Paris, France 27 February – 5 April 2020

2020 ◽  
Vol 24 (4) ◽  
pp. 379-381
Author(s):  
Aurel von Richthofen
Screen Bodies ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 46-62
Author(s):  
Yunying Huang

Dominant design narratives about “the future” contain many contemporary manifestations of “orientalism” and Anti-Chineseness. In US discourse, Chinese people are often characterized as a single communist mass and the primary market for which this future is designed. By investigating the construction of modern Chinese pop culture in Chinese internet and artificial intelligence, and discussing different cultural expressions across urban, rural, and queer Chinese settings, I challenge external Eurocentric and orientalist perceptions of techno-culture in China, positing instead a view of Sinofuturism centered within contemporary Chinese contexts.


Author(s):  
Mahesh K. Joshi ◽  
J.R. Klein

The world of work has been impacted by technology. Work is different than it was in the past due to digital innovation. Labor market opportunities are becoming polarized between high-end and low-end skilled jobs. Migration and its effects on employment have become a sensitive political issue. From Buffalo to Beijing public debates are raging about the future of work. Developments like artificial intelligence and machine intelligence are contributing to productivity, efficiency, safety, and convenience but are also having an impact on jobs, skills, wages, and the nature of work. The “undiscovered country” of the workplace today is the combination of the changing landscape of work itself and the availability of ill-fitting tools, platforms, and knowledge to train for the requirements, skills, and structure of this new age.


Author(s):  
Michael Szollosy

Public perceptions of robots and artificial intelligence (AI)—both positive and negative—are hopelessly misinformed, based far too much on science fiction rather than science fact. However, these fictions can be instructive, and reveal to us important anxieties that exist in the public imagination, both towards robots and AI and about the human condition more generally. These anxieties are based on little-understood processes (such as anthropomorphization and projection), but cannot be dismissed merely as inaccuracies in need of correction. Our demonization of robots and AI illustrate two-hundred-year-old fears about the consequences of the Enlightenment and industrialization. Idealistic hopes projected onto robots and AI, in contrast, reveal other anxieties, about our mortality—and the transhumanist desire to transcend the limitations of our physical bodies—and about the future of our species. This chapter reviews these issues and considers some of their broader implications for our future lives with living machines.


2019 ◽  
Vol 19 (1) ◽  
pp. 10-14
Author(s):  
Ryan Scott ◽  
Malcolm Le Lievre

Purpose The purpose of this paper is to explore insights methodology and technology by using behavioral to create a mind-set change in the way people work, especially in the age of artificial intelligence (AI). Design/methodology/approach The approach is to examine how AI is driving workplace change, introduce the idea that most organizations have untapped analytics, add the idea of what we know future work will look like and look at how greater, data-driven human behavioral insights will help prepare future human-to-human work and inform people’s work with and alongside AI. Findings Human (behavioral) intelligence will be an increasingly crucial part of behaviorally smart organizations, from hiring to placement to adaptation to team building, compliance and more. These human capability insights will, among other things, better prepare people and organizations for changing work roles, including working with and alongside AI and similar tech innovation. Research limitations/implications No doubt researchers across the private, public and nonprofit sectors will want to further study the nexus of human capability, behavioral insights technology and AI, but it is clear that such work is already underway and can prove even more valuable if adopted on a broader, deeper level. Practical implications Much “people data” inside organizations is currently not being harvested. Validated, scalable processes exist to mine that data and leverage it to help organizations of all types and sizes be ready for the future, particularly in regard to the marriage of human capability and AI. Social implications In terms of human capability and AI, individuals, teams, organizations, customers and other stakeholders will all benefit. The investment of time and other resources is minimal, but must include C-suite buy in. Originality/value Much exists on the softer aspects of the marriage of human capability and AI and other workplace advancements. What has been lacking – until now – is a 1) practical, 2) validated and 3) scalable behavioral insights tech form that quantifiably informs how people and AI will work in the future, especially side by side.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Muhammad Javed Iqbal ◽  
Zeeshan Javed ◽  
Haleema Sadia ◽  
Ijaz A. Qureshi ◽  
Asma Irshad ◽  
...  

AbstractArtificial intelligence (AI) is the use of mathematical algorithms to mimic human cognitive abilities and to address difficult healthcare challenges including complex biological abnormalities like cancer. The exponential growth of AI in the last decade is evidenced to be the potential platform for optimal decision-making by super-intelligence, where the human mind is limited to process huge data in a narrow time range. Cancer is a complex and multifaced disorder with thousands of genetic and epigenetic variations. AI-based algorithms hold great promise to pave the way to identify these genetic mutations and aberrant protein interactions at a very early stage. Modern biomedical research is also focused to bring AI technology to the clinics safely and ethically. AI-based assistance to pathologists and physicians could be the great leap forward towards prediction for disease risk, diagnosis, prognosis, and treatments. Clinical applications of AI and Machine Learning (ML) in cancer diagnosis and treatment are the future of medical guidance towards faster mapping of a new treatment for every individual. By using AI base system approach, researchers can collaborate in real-time and share knowledge digitally to potentially heal millions. In this review, we focused to present game-changing technology of the future in clinics, by connecting biology with Artificial Intelligence and explain how AI-based assistance help oncologist for precise treatment.


Sign in / Sign up

Export Citation Format

Share Document