A neurocognitive perspective on retrieval interference in L2 sentence processing

2016 ◽  
Vol 20 (4) ◽  
pp. 687-688 ◽  
Author(s):  
PHILLIP HAMRICK ◽  
MICHAEL T. ULLMAN

Cunnings (Cunnings) offers an interpretation of L2-L1 sentence processing differences in terms of memory principles. We applaud such cross-domain approaches, which seem likely to significantly elucidate the neurocognition of language. Cunnings attributes sentence processing differences between (adult) high proficiency L2 and L1 speakers to an increased susceptibility to similarity-based retrieval interference, rather than to qualitative L2-L1 processing differences (cf. Clahsen & Felser, 2006). On his account, both L1 and L2 sentence processing depend upon a ‘bipartite’ working memory, which involves maintaining items active by focusing attention on long-term memory representations (Cowan, 2001).

2020 ◽  
pp. 311-332
Author(s):  
Nicole Hakim ◽  
Edward Awh ◽  
Edward K. Vogel

Visual working memory allows us to maintain information in mind for use in ongoing cognition. Research on visual working memory often characterizes it within the context of its interaction with long-term memory (LTM). These embedded-processes models describe memory representations as existing in three potential states: inactivated LTM, including all representations stored in LTM; activated LTM, latent representations that can quickly be brought into an active state due to contextual priming or recency; and the focus of attention, an active but sharply limited state in which only a small number of items can be represented simultaneously. This chapter extends the embedded-processes framework of working memory. It proposes that working memory should be defined operationally based on neural activity. By defining working memory in this way, the important theoretical distinction between working memory and LTM is maintained, while still acknowledging that they operate together. It is additionally proposed that active working memory should be further subdivided into at least two subcomponent processes that index item-based storage and currently prioritized spatial locations. This fractionation of working memory is based on recent research that has found that the maintenance of information distinctly relies on item-based representations as well as prioritization of spatial locations. It is hoped that this updated framework of the definition of working memory within the embedded-processes model provides further traction for understanding how we maintain information in mind.


2012 ◽  
Vol 19 (2) ◽  
pp. 258-263 ◽  
Author(s):  
Stephen Darling ◽  
Richard J. Allen ◽  
Jelena Havelka ◽  
Aileen Campbell ◽  
Emma Rattray

2013 ◽  
Vol 21 (6) ◽  
pp. 682-685
Author(s):  
Kao-Wei Chua ◽  
Daniel N. Bub ◽  
Michael E. J. Masson ◽  
Isabel Gauthier

2012 ◽  
Vol 24 (5) ◽  
pp. 1173-1190 ◽  
Author(s):  
Kerstin Jost ◽  
Patrick H. Khader ◽  
Peter Düsel ◽  
Franziska R. Richter ◽  
Kristina B. Rohde ◽  
...  

Remembering is more than an activation of a memory trace. As retrieval cues are often not uniquely related to one specific memory, cognitive control should come into play to guide selective memory retrieval by focusing on relevant while ignoring irrelevant information. Here, we investigated, by means of EEG and fMRI, how the memory system deals with retrieval interference arising when retrieval cues are associated with two material types (faces and spatial positions), but only one is task-relevant. The topography of slow EEG potentials and the fMRI BOLD signal in posterior storage areas indicated that in such situations not only the relevant but also the irrelevant material becomes activated. This results in retrieval interference that triggers control processes mediated by the medial and lateral PFC, which are presumably involved in biasing target representations by boosting the task-relevant material. Moreover, memory-based conflict was found to be dissociable from response conflict that arises when the relevant and irrelevant materials imply different responses. The two types of conflict show different activations in the medial frontal cortex, supporting the claim of domain-specific prefrontal control systems.


2003 ◽  
Vol 26 (6) ◽  
pp. 756-756 ◽  
Author(s):  
Jennifer D. Ryan ◽  
Neal J. Cohen

Ruchkin et al. ascribe a pivotal role to long-term memory representations and binding within working memory. Here we focus on the interaction of working memory and long-term memory in supporting on-line representations of experience available to guide on-going processing, and we distinguish the role of frontal-lobe systems from what the hippocampus contributes to relational long-term memory binding.


2018 ◽  
Vol 30 (2) ◽  
pp. 223-237 ◽  
Author(s):  
Natalie Biderman ◽  
Roy Luria ◽  
Andrei R. Teodorescu ◽  
Ron Hajaj ◽  
Yonatan Goshen-Gottstein

How detailed are long-term-memory representations compared with working memory representations? Recent research has found an equal fidelity bound for both memory systems, suggesting a novel general constraint on memory. Here, we assessed the replicability of this discovery. Participants (total N = 72) were presented with colored real-life objects and were asked to recall the colors using a continuous color wheel. Deviations from study colors were modeled to generate two estimates of color memory: the variability of remembered colors—fidelity—and the probability of forgetting the color. Estimating model parameters using both maximum-likelihood estimation and Bayesian hierarchical modeling, we found that working memory had better fidelity than long-term memory (Experiments 1 and 2). Furthermore, within each system, fidelity worsened as a function of time-correlated mechanisms (Experiments 2 and 3). We conclude that fidelity is subject to decline across and within memory systems. Thus, the justification for a general fidelity constraint in memory does not seem to be valid.


2016 ◽  
Vol 24 (1) ◽  
pp. 78-101 ◽  
Author(s):  
Maria Giammarco ◽  
Adriana Paoletti ◽  
Emma B. Guild ◽  
Naseem Al-Aidroos

2011 ◽  
Vol 23 (11) ◽  
pp. 3540-3554 ◽  
Author(s):  
Patrick H. Khader ◽  
Thorsten Pachur ◽  
Stefanie Meier ◽  
Siegfried Bien ◽  
Kerstin Jost ◽  
...  

Many of our daily decisions are memory based, that is, the attribute information about the decision alternatives has to be recalled. Behavioral studies suggest that for such decisions we often use simple strategies (heuristics) that rely on controlled and limited information search. It is assumed that these heuristics simplify decision-making by activating long-term memory representations of only those attributes that are necessary for the decision. However, from behavioral studies alone, it is unclear whether using heuristics is indeed associated with limited memory search. The present study tested this assumption by monitoring the activation of specific long-term-memory representations with fMRI while participants made memory-based decisions using the “take-the-best” heuristic. For different decision trials, different numbers and types of information had to be retrieved and processed. The attributes consisted of visual information known to be represented in different parts of the posterior cortex. We found that the amount of information required for a decision was mirrored by a parametric activation of the dorsolateral PFC. Such a parametric pattern was also observed in all posterior areas, suggesting that activation was not limited to those attributes required for a decision. However, the posterior increases were systematically modulated by the relative importance of the information for making a decision. These findings suggest that memory-based decision-making is mediated by the dorsolateral PFC, which selectively controls posterior storage areas. In addition, the systematic modulations of the posterior activations indicate a selective boosting of activation of decision-relevant attributes.


Sign in / Sign up

Export Citation Format

Share Document