scholarly journals Automaticity of speech processing in early bilingual adults and children

2019 ◽  
Vol 23 (2) ◽  
pp. 429-445 ◽  
Author(s):  
Hia Datta ◽  
Arild Hestvik ◽  
Nancy Vidal ◽  
Carol Tessel ◽  
Miwako Hisagi ◽  
...  

We examine whether early acquisition of a second language (L2) leads to native-like neural processing of phonemic contrasts that are absent in the L1. Four groups (adult and child monolingual speakers of English; adult and child early bilingual speakers of English and Spanish, exposed to both languages before 5 years of age) participated in a study comparing the English /ɪ/ - /ε/ contrast. Neural measures of automatic change detection (Mismatch Negativity, MMN) and attention (Processing Negativity, PN and Late Negativity, LN) were measured by varying whether participants tracked the stimulus stream or not. We observed no effect of bilingualism on the MMN, but adult bilinguals differed significantly from adult monolinguals on neural indices of attention. The child bilinguals were indistinguishable from their monolingual peers. This suggest that learning a L2 before five years of age leads to native-like phoneme discrimination, but bilinguals develop increased attentional sensitivity to speech sounds.

2007 ◽  
Vol 21 (3-4) ◽  
pp. 214-223 ◽  
Author(s):  
Israel Nelken ◽  
Nachum Ulanovsky

Animal models of MMN may serve both to further our understanding of neural processing beyond pure sensory coding and for unraveling the neural and pharmacological processes involved in the generation of MMN. We start this review by discussing the methodological issues that are especially important when pursuing a single-neuron correlate of MMN. Correlates of MMN have been studied in mice, rats, cats, and primates. Whereas essentially all of these studies demonstrated the presence of stimulus-specific adaptation, in the sense that responses to deviant tones are larger than the responses to standard tones, the presence of real MMN has been established only in a few. We argue for the use of more and better controls in order to clarify the situation. Finally, we discuss in detail the relationships between stimulus-specific adaptation of single-neuron responses, as established in the cat auditory cortex, and MMN. We argue that this is currently the only fully established correlate of true change detection, and hypothesize that it precedes and probably induces the neural activity that is eventually measured as MMN.


2021 ◽  
Author(s):  
Áine Ní Choisdealbha ◽  
Adam Attaheri ◽  
Sinead Rocha ◽  
Perrine Brusini ◽  
Sheila Flanagan ◽  
...  

Amplitude rise times play a crucial role in the perception of rhythm in speech, and reduced perceptual sensitivity to differences in rise time is related to developmental language difficulties. Amplitude rise times also play a mechanistic role in neural entrainment to the speech amplitude envelope. Using an ERP paradigm, here we examined for the first time whether infants at the ages of seven and eleven months exhibit an auditory mismatch response to changes in the rise times of simple repeating auditory stimuli. We found that infants exhibited a mismatch response to the oddball rise time that was more positive at seven than eleven months of age. At eleven months, there was a left-lateralised shift to a mismatch negativity. Infants’ ability to detect changes in rise time was generally robust, with a range of oddball stimuli with different rise times each eliciting a mismatch response from 85% of infants. A lateralised effect indicated that the size of the mismatch response varied as the change in rise time became easier to detect. The mismatch response to the different rise time oddballs also stabilised as infants got older. The results indicate that neural processing of changes in rise time develops early in life, supporting the possibility that early speech processing is facilitated by neural sensitivity to these acoustic cues to rhythm.


2019 ◽  
Vol 287 ◽  
pp. 1-9 ◽  
Author(s):  
Derek J. Fisher ◽  
Erica D. Rudolph ◽  
Emma M.L. Ells ◽  
Verner J. Knott ◽  
Alain Labelle ◽  
...  

2021 ◽  
pp. 002221942098800
Author(s):  
Paula Virtala ◽  
Eino Partanen ◽  
Teija Kujala

Rules and regularities of language are typically processed in an implicit and effortless way in the human brain. Individuals with developmental dyslexia have problems in implicit learning of regularities in sequential stimuli but the neural basis of this deficit has not been studied. This study investigated extraction and utilization of a complex auditory rule at neural and perceptual levels in 18 adults with dyslexia and 20 typical readers. Mismatch negativity (MMN) and P3a responses to rule violations in speech stimuli, reflecting change detection and attention switch, respectively, were recorded with electroencephalogram. Both groups reported no or little explicit awareness of the rule, suggesting implicit processing. People with dyslexia showed deficient extraction of the rule evidenced by diminished MMNs estimated to originate particularly from the left perisylvian region. The group difference persisted in attentive condition after the participants were told about the rule, and behavioral detection of the rule violations was poor in people with dyslexia, possibly suggesting difficulties also in utilizing explicit information of the rule. Based on these results, the speech processing difficulties in dyslexia extend beyond phoneme discrimination and basic auditory feature extraction. Challenges in implicit extraction and effortless adoption of complex auditory rules may be central for language learning difficulties in dyslexia.


2020 ◽  
Vol 31 (2) ◽  
pp. 81-86
Author(s):  
Wido Nager ◽  
Tilla Franke ◽  
Tobias Wagner-Altendorf ◽  
Eckart Altenmüller ◽  
Thomas F. Münte

Abstract. Playing a musical instrument professionally has been shown to lead to structural and functional neural adaptations, making musicians valuable subjects for neuroplasticity research. Here, we follow the hypothesis that specific musical demands further shape neural processing. To test this assumption, we subjected groups of professional drummers, professional woodwind players, and nonmusicians to pure tone sequences and drum sequences in which infrequent anticipations of tones or drum beats had been inserted. Passively listening to these sequences elicited a mismatch negativity to the temporally deviant stimuli which was greater in the musicians for tone series and particularly large for drummers for drum sequences. In active listening conditions drummers more accurately and more quickly detected temporally deviant stimuli.


Author(s):  
Riitta Salmelin ◽  
Jan Kujala ◽  
Mia Liljeström

When seeking to uncover the brain correlates of language processing, timing and location are of the essence. Magnetoencephalography (MEG) offers them both, with the highest sensitivity to cortical activity. MEG has shown its worth in revealing cortical dynamics of reading, speech perception, and speech production in adults and children, in unimpaired language processing as well as developmental and acquired language disorders. The MEG signals, once recorded, provide an extensive selection of measures for examination of neural processing. Like all other neuroimaging tools, MEG has its own strengths and limitations of which the user should be aware in order to make the best possible use of this powerful method and to generate meaningful and reliable scientific data. This chapter reviews MEG methodology and how MEG has been used to study the cortical dynamics of language.


Author(s):  
Hia Datta ◽  
Arild Hestvik ◽  
Nancy Vidal ◽  
Carol Tessel ◽  
Miwako Hisagi ◽  
...  

Science ◽  
1968 ◽  
Vol 161 (3839) ◽  
pp. 395-396 ◽  
Author(s):  
D. Kimura ◽  
S. Folb

Sign in / Sign up

Export Citation Format

Share Document