Resources for the Study of Cellular Structure by High Voltage Electron Tomography, Serial Thin Sectioning, Specific Labeling, and Image Analysis

1997 ◽  
Vol 3 (S2) ◽  
pp. 273-274
Author(s):  
David Mastronarde ◽  
James Kremer ◽  
Eileen O’Toole ◽  
Mary Morphew ◽  
Mark Ladinsky ◽  
...  

We are working to improve methods for the study of cellular fine structure. Our approach is to advance each of the key steps in the preparation of specimens for EM: high quality fixation that will preserve both structure and antigenicity; methods for specific labeling; efficient acquisition of 3-D electron microscopic data; and software for 3-D reconstruction and display.Our work on high quality structure preservation has focused on methods for fast freezing and freeze substitution. Both plunge freezing of specimens grown on coated gold grids and high pressure freezing of either cultured cells or tissue specimens have yielded well preserved material. These samples are suitable for freeze substitution fixation with either anhydrous aldehydes in acetone at -90°C, for the preservation of antigens, or aldehydes, tannic acid, OsO4, and uranyl acetate for optimal preservation the structure.We have used a JEOL JEM-1,000 high voltage microscope to image sections about 250nm thick, employing a goniometer stage to perform dual axis tomography for 3-D reconstruction with approximately isotropic resolution at ∼7nm.

Author(s):  
K.R. Porter ◽  
K.J. Luby

Cells of several types, when grown and maintained in monolayer culture, will spread on the substrate to be not greater than 1 pm thick in their thinner margins. When fixed with glutaraldehyde and OsO4 and then dried by the critical-point method,these cells can be viewed in the HVEM and stereo images of very high quality can be obtained. Grown directly on formvar-coated gold grids, such cells are quickly and easily prepared for microscopy.


2001 ◽  
Vol 7 (S2) ◽  
pp. 92-93
Author(s):  
M. E. Martone ◽  
S. Peltier ◽  
S. Lamont ◽  
A. Gupta ◽  
B. Ludaescher ◽  
...  

The application of electron tomography to cell biology has led to important insights into the 3D fine structure of subcellular processes and organelles. Tomography has been particularly useful for studying relatively large, multi-component structures such as the Golgi apparatus, mitochondria and synaptic complexes. When combined with very powerful high voltage electron microscopes, tomography has also provided high resolution quantitative views of extended structures such as neuronal dendrites in very thick sections (4 μm) at electron microscopic resolution. The utility of tomography is twofold: first, it provides 3D examination of subcellular structure without the need for serial section analysis; second, because the computed slices through the tomographic volumes can be much thinner than is possible to produce by physical sectioning, it reveals structural detail in the range of 5-30 nm that tends to be obscured in conventional thin sections. Tomographic analysis has forced re-assessment of long-standing views of organelles such as mitochondria and the Golgi apparatus and as the technique advances, additional insights are likely forthcoming.Electron tomography is an expensive technique, both in terms of the instruments used and the computational resources required. The three major high voltage electron microscope resources in the United States, San Diego, Boulder and Albany, all are actively engaged in tomographic research and offer this important technology to the scientific community at large.


Author(s):  
S. Shirahama ◽  
G. C. Engle ◽  
R. M. Dutcher

A transplantable carcinoma was established in North West Sprague Dawley (NWSD) rats by use of X-irradiation by Engle and Spencer. The tumor was passaged through 63 generations over a period of 32 months. The original tumor, an adenocarcinoma, changed into an undifferentiated carcinoma following the 19th transplant. The tumor grew well in NWSD rats of either sex at various ages. It was invariably fatal, causing death of the host within 15 to 35 days following transplantation.Tumor, thymus, spleen, and plasma from 7 rats receiving transplants of tumor at 3 to 9 weeks of age were examined with an electron microscope at intervals of 8, 15, 22 and 30 days after transplantation. Four normal control rats of the same age were also examined. The tissues were fixed in glutaraldehyde, postfixed in osmium tetroxide and embedded in Epon. The plasma was separated from heparanized blood and processed as previously described for the tissue specimens. Sections were stained with uranyl acetate followed by lead citrate and examined with an RCA EMU-3G electron microscope.


Author(s):  
A.S. Lossinsky ◽  
M.J. Song

Previous studies have suggested the usefulness of high-voltage electron microscopy (HVEM) for investigating blood-bram barrier (BBB) injury and the mechanism of inflammatory-cell (IC) attachment. These studies indicated that, in evaluating standard conventional thin sections, one might miss cellular attachment sites of ICs in their process of attaching to the luminal endothelial cell (EC) surface of cerebral blood vessels. Our current studies in animals subjected to autoimmune disease suggest that HVEM may be useful in localizing precise receptor sites involved in early IC attachment.Experimental autoimmune encephalomyelitis (EAE) was induced in mice and rats according to standard procedures. Tissue samples from cerebellum, thalamus or spinal cords were embedded in plastic following vascular perfusion with buffered aldehyde. Thick (0.5-0.7 μm) sections were cut on glass knives and collected on Formvar-coated slot grids stained with uranylacetate and lead citrate and examined with the AEI EM7 1.2 MV HVEM in Albany, NY at 1000 kV.


Author(s):  
Seiji Isoda ◽  
Kimitsugu Saitoh ◽  
Sakumi Moriguchi ◽  
Takashi Kobayashi

On the observation of structures by high resolution electron microscopy, recording materials with high sensitivity and high quality is awaited, especially for the study of radiation sensitive specimens. Such recording material should be easily combined with the minimum dose system and cryoprotection method. Recently a new recording material, imaging plate, comes to be widely used in X-ray radiography and also in electron microscopy, because of its high sensitivity, high quality and the easiness in handling the images with a computer. The properties of the imaging plate in 100 to 400 kV electron microscopes were already discussed and the effectiveness was revealed.It is demanded to study the applicability of the imaging plate to high voltage electron microscopy. The quality of the imaging plate was investigated using an imaging plate system (JEOL EM-HSR100) equipped in a new Kyoto 1000kV electron microscope. In the system both the imaging plate and films can be introduced together into the camera chamber. Figure 1 shows the effect of accelerating voltage on read-out signal intensities from the imaging plate. The characteristic of commercially available imaging plates is unfortunately optimized for 100 to 200 keV electrons and then for 600 to 1000 keV electrons the signal is reduced. In the electron dose range of 10−13 to 10−10 C/cm2, the signal increases linearly with logarithm of electron dose in all acceralating volatges.


2003 ◽  
Vol 9 (S03) ◽  
pp. 384-385
Author(s):  
Eileen T. O'Toole ◽  
Kent L. McDonald ◽  
Jana Mäntler ◽  
J. Richard McIntosh ◽  
Anthony A. Hyman ◽  
...  

1997 ◽  
Vol 3 (S2) ◽  
pp. 231-232
Author(s):  
M. E. Martone ◽  
V. M. Edelman ◽  
A. Thor ◽  
S. J. Young ◽  
S. P. Lamont ◽  
...  

Early electron microscopic studies documented that significant changes in the membrane systems of cardiac cells occur in both ischemic and non-ischemic heart failure. These studies relied on analysis of two-dimensional sections and although quantitative changes were observed, the overall organization of the tranverse tubules (T-tubules) and the sarcoplasmic reticulum could not be assessed. In a 3-dimensional study using high voltage electron microscopy (EM) of the T-tubules in spontaneously hypertensive rats, Nakamura and Hama (1991) observed that concomitant with an increase in surface area, the T-tubule system becomes progressively more disorganized and exhibits structural irregularities such as increased numbers of longitudinal tubules, numerous short dead end branches and complex tubular aggregates. These authors suggested that this disorganization may interfere with synchronous contraction over the entire cell.In the present study, we examined the 3-dimensional organization of T-tubules in the left ventricle of explanted human hearts using confocal microscopy and EM tomography.


1998 ◽  
Vol 4 (S2) ◽  
pp. 440-441
Author(s):  
Maryann E. Martone ◽  
Andrea Thor ◽  
Stephen J. Young ◽  
Mark H. Ellisman.

Light microscopic imaging has experienced a renaissance in the past decade or so, as new techniques for high resolution 3D light microscopy have become readily available. Light microscopic (LM) analysis of cellular details is desirable in many cases because of the flexibility of staining protocols, the ease of specimen preparation and the relatively large sample size that can be obtained compared to electron microscopic (EM) analysis. Despite these advantages, many light microscopic investigations require additional analysis at the electron microscopic level to resolve fine structural features.High voltage electron microscopy allows the use of relatively thick sections compared to conventional EM and provides the basis for excellent new methods to bridge the gap between microanatomical details revealed by LM and EM methods. When combined with electron tomography, investigators can derive accurate 3D data from these thicker specimens. Through the use of correlated light and electron microscopy, 3D reconstructions of large cellular or subcellular structures can be obtained with the confocal microscope,


Sign in / Sign up

Export Citation Format

Share Document