Spatially-Resolved X-Ray Absorption fine Structure (XAFS) Spectroscopy Using Undulator Radiation Focused by Dynamically-Bent Elliptical Mirrors

1998 ◽  
Vol 4 (S2) ◽  
pp. 364-365
Author(s):  
S. R. Sutton ◽  
P. E. Eng ◽  
M. L. Rivers ◽  
M. Newville

X-ray absorption spectroscopy (XANES and EXAFS) applied with x-ray microprobe instrumentation (figures 1) can be used for studying the electronic structure of specific elements in complex materials in a spatially-resolved manner (figure 2). Such techniques are valuable in a wide range of studies including hydrothermal fluid processes, migration and encapsulation of toxic and radioactive wastes, and redox evolution of solar system bodies.One of the major technical challenges in this work is the production of high flux microbeams from high power, hard x-ray synchrotron sources. Some of the microbeam technologies under development include tapered glass capillaries, zone plates, and elliptical mirrors. Each approach has advantages and disadvantages and the optimum microfocusing device depends on the particular experiment.One of the most versatile of these devices is the dynamically bent, elliptical mirror, especially when a pair of mirrors are arranged in a Kirkpatrick-Baez (KB) geometry to provide two-dimensional focusing. This versatility derives mainly from four attributes.

Author(s):  
Kazumasa Murata ◽  
Junya Ohyama ◽  
Atsushi Satsuma

In the present study, the redispersion behavior of Ag particles on ZSM-5 in the presence of coke was observed using in situ X-ray absorption fine structure (XAFS) spectroscopy.


2018 ◽  
Vol 25 (4) ◽  
pp. 1135-1143 ◽  
Author(s):  
Faisal Khan ◽  
Suresh Narayanan ◽  
Roger Sersted ◽  
Nicholas Schwarz ◽  
Alec Sandy

Multi-speckle X-ray photon correlation spectroscopy (XPCS) is a powerful technique for characterizing the dynamic nature of complex materials over a range of time scales. XPCS has been successfully applied to study a wide range of systems. Recent developments in higher-frame-rate detectors, while aiding in the study of faster dynamical processes, creates large amounts of data that require parallel computational techniques to process in near real-time. Here, an implementation of the multi-tau and two-time autocorrelation algorithms using the Hadoop MapReduce framework for distributed computing is presented. The system scales well with regard to the increase in the data size, and has been serving the users of beamline 8-ID-I at the Advanced Photon Source for near real-time autocorrelations for the past five years.


1997 ◽  
Vol 11 (16n17) ◽  
pp. 745-748 ◽  
Author(s):  
Rebekah Min-Fang Hsu ◽  
Kai-Jan Lin ◽  
Cheng Tien ◽  
Lin-Yan Jang

X-ray absorption fine structure XAFS spectroscopy has been used to determine the valence system for the Fe atom in ilmenite, FeTiO3 . This is the first XAFS data in FeTiO3 to our knowledge. The α- Fe2O3 data served as the standard in determining the ionization of the Fe atom in FeTiO3 . Observation of intensity and k-space are consistent. There was no evidence of mixed valence on comparing the FeTiO3 near edge X-ray absorption spectrum with α- Fe2O3 data. The absorption spectra suggest that iron is in the trivalent state in ilmenite.


2005 ◽  
Vol 71 (3) ◽  
pp. 1300-1310 ◽  
Author(s):  
Brandy Toner ◽  
Sirine Fakra ◽  
Mario Villalobos ◽  
Tony Warwick ◽  
Garrison Sposito

ABSTRACT Pseudomonas putida strain MnB1, a biofilm-forming bacterial culture, was used as a model for the study of bacterial Mn oxidation in freshwater and soil environments. The oxidation of aqueous Mn+2 [Mn+2 (aq)] by P. putida was characterized by spatially and temporally resolving the oxidation state of Mn in the presence of a bacterial biofilm, using scanning transmission X-ray microscopy (STXM) combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the Mn L2,3 absorption edges. Subsamples were collected from growth flasks containing 0.1 and 1 mM total Mn at 16, 24, 36, and 48 h after inoculation. Immediately after collection, the unprocessed hydrated subsamples were imaged at a 40-nm resolution. Manganese NEXAFS spectra were extracted from X-ray energy sequences of STXM images (stacks) and fit with linear combinations of well-characterized reference spectra to obtain quantitative relative abundances of Mn(II), Mn(III), and Mn(IV). Careful consideration was given to uncertainty in the normalization of the reference spectra, choice of reference compounds, and chemical changes due to radiation damage. The STXM results confirm that Mn+2 (aq) was removed from solution by P. putida and was concentrated as Mn(III) and Mn(IV) immediately adjacent to the bacterial cells. The Mn precipitates were completely enveloped by bacterial biofilm material. The distribution of Mn oxidation states was spatially heterogeneous within and between the clusters of bacterial cells. Scanning transmission X-ray microscopy is a promising tool for advancing the study of hydrated interfaces between minerals and bacteria, particularly in cases where the structure of bacterial biofilms needs to be maintained.


2020 ◽  
Vol 35 (10) ◽  
pp. 2298-2304
Author(s):  
Christopher Schlesiger ◽  
Sebastian Praetz ◽  
Richard Gnewkow ◽  
Wolfgang Malzer ◽  
Birgit Kanngießer

New developments in the description and modeling of Highly Annealed Pyrolytic Graphite (HAPG) mosaic crystals have led to the possibility of designing optimized optical solutions for X-ray absorption fine structure (XAFS) spectroscopy.


1997 ◽  
Vol 3 (S2) ◽  
pp. 851-852
Author(s):  
H. Ade

Infrared, Raman, and fluorescence/luminescence microspectroscopy/microscopy in many instances seek to provide high sensitivity compositional and functional information that goes beyond mere elemental composition. This goal is shared by NEXAFS microscopy, in which Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy is employed to provide chemical sensitivity and can be relatively easily adopted in a scanning transmission x-ray microscope (STXM). In addition to compositional information, NEXAFS microscopy can exploit the dependence of x-ray absorption resonances on the bond orientation relative to the linearly polarized x rays (linear dichroism microscopy). For compositional analysis, NEXAFS microscopy is analogous to Electron Energy Loss Spectroscopy (EELS) in an electron microscope. However, when utilizing near edge spectral features, NEXAFS microscopy requires a considerable lower dose than EELS microscopy which makes it very suitable to studying radiation sensitive materials such as polymers. NEXAFS has shown to have excellent sensitivity to a wide range of moieties in polymers, including sensitivity to substitution isomerism.


2009 ◽  
Vol 16 (2) ◽  
pp. 247-259 ◽  
Author(s):  
Jens Kruse ◽  
Peter Leinweber ◽  
Kai-Uwe Eckhardt ◽  
Frauke Godlinski ◽  
Yongfeng Hu ◽  
...  

Synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy is becoming an increasingly used tool for the element speciation in complex samples. For phosphorus (P) almost all XANES measurements have been carried out at the K-edge. The small number of distinctive features at the P K-edge makes in some cases the identification of different P forms difficult or impossible. As indicated by a few previous studies, the P L 2,3-edge spectra were richer in spectral features than those of the P K-edge. However, experimentally consistent spectra of a wide range of reference compounds have not been published so far. In this study a library of spectral features is presented for a number of mineral P, organic P and P-bearing minerals for fingerprinting identification. Furthermore, the effect of radiation damage is shown for three compounds and measures are proposed to reduce it. The spectra library provided lays a basis for the identification of individual P forms in samples of unknown composition for a variety of scientific areas.


2020 ◽  
Vol 531 ◽  
pp. 119305 ◽  
Author(s):  
S.R. Sutton ◽  
A. Lanzirotti ◽  
M. Newville ◽  
M. Darby Dyar ◽  
J. Delaney

Sign in / Sign up

Export Citation Format

Share Document