Immunocytochemical Analysis of Murine Peritoneal Macrophages Treated with “Poly-Plat”, an in Vitro and in Vivo Study

1998 ◽  
Vol 4 (S2) ◽  
pp. 1122-1123
Author(s):  
H. J. Muenchen ◽  
S.K. Aggarwal

Poly-[(trans-1,2-diaminocyclohexane) platinumj-carboxyamylose (“poly-plat“) is a second generation analog of cisplatin which enhances the immune system with greater efficacy in vitro and in vivo “Poly-plat” contains 1/5 the platinum of CDDP and demonstrates less toxicity. In order to understand the mechanism of action of this compound an in vitro and in vivo study was performed. Swiss Webster mice and isolated murine peritoneal macrophages were treated with “poly-plat” (10 mg/kg). The Swiss Webster mice were given bolus injections and sacrificed at 2 and 12 days. Peritoneal macrophages were then isolated and allowed to incubate in culture for 24 h. Peritoneal macrophages were also isolated from normal mice and treated with the drugs for 2 h. After treatments the macrophages were placed in fresh media and allowed to incubate 24 h. Supematants were isolated at various times during culture for immunocytochemical analysis.Both in vitro and in vivo studies showed enhanced immunostimulation after their respective treatments.

1997 ◽  
Vol 3 (S2) ◽  
pp. 11-12
Author(s):  
H. J. Muenchen ◽  
S.K. Aggarwal ◽  
H.K. Misra ◽  
P. J. Andrulis

Poly-[(trans-1,2-diaminocyclohexane) platinumj-carboxyamylose (“poly-plat”), 5-sulfosalicylato-trans -(1,2-diaminocyclohexane) platinum (SSP), and 4-hydroxy-∝-sulfonylphenylacetato (trans 1,2-diaminocyclohexane) platinum (II) (SAP) are second generation analogs of cisplatin (CDDP) with higher efficacy and potency than cisplatin. This is particularly true of “poly-plat” which contains 1/5 the platinum of CDDP. In order to understand the mechanism of action of these compounds, isolated murine peritoneal macrophages in culture medium were treated with “poly-plat”, SSP, or SAP (5 μg/ml) for 2 h. Drug containing medium was then replaced with fresh medium and the cells were allowed to incubate at 37° C (5% CO2) for 24 h. Supernatants were collected at 0.5, 1, 2, and 24 h post-treatment for immunocytochemical analysis. Confocal microscopy studies demonstrated an increase in the number of lysosomes in the treated macrophages, but only “poly-plat” and SSP treated macrophages were stimulated to form cytoplasmic extensions at 2 h and 24 h.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259008
Author(s):  
Leandro da Costa Clementino ◽  
Guilherme Felipe Santos Fernandes ◽  
Igor Muccilo Prokopczyk ◽  
Wilquer Castro Laurindo ◽  
Danyelle Toyama ◽  
...  

Leishmaniasis is a neglected disease that affects 12 million people living mainly in developing countries. Herein, 24 new N-oxide-containing compounds were synthesized followed by in vitro and in vivo evaluation of their antileishmanial activity. Compound 4f, a furoxan derivative, was particularly remarkable in this regard, with EC50 value of 3.6 μM against L. infantum amastigote forms and CC50 value superior to 500 μM against murine peritoneal macrophages. In vitro studies suggested that 4f may act by a dual effect, by releasing nitric oxide after biotransformation and by inhibiting cysteine protease CPB (IC50: 4.5 μM). In vivo studies using an acute model of infection showed that compound 4f at 7.7 mg/Kg reduced ~90% of parasite burden in the liver and spleen of L. infantum-infected BALB/c mice. Altogether, these outcomes highlight furoxan 4f as a promising compound for further evaluation as an antileishmanial agent.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3411-3411 ◽  
Author(s):  
Lorenzo M. Leoni ◽  
Brian Crain ◽  
Brandi Bailey ◽  
Mimi Phillips ◽  
Heather Bendall ◽  
...  

Abstract SDX-101 (R-etodolac), which is currently being evaluated in clinical trials for treatment of chronic lymphocytic leukemia, down regulates the activity of the β-catenin pathway and inhibits the growth of non-Hodgkin’s Lymphoma Daudi tumor xenografts in vivo when dosed orally (AACR PROC 2004 Abs# 2061 and #4574). Initial co-immunoprecipitation experiments conducted on cell nuclear fractions identified a heteromeric nuclear protein complex containing β-catenin and PPAR-γ. Furthermore, we have demonstrated that SDX-101 treatment reduces nuclear β-catenin in the immunoprecipitated complex, indicating that this complex may represent a target of SDX-101 (AACR PROC 2004 Abs# 3672). We recently reported evaluation of novel structural analogs of SDX-101 and have shown that these analogs, whose structures were not disclosed, are 5–10 fold more potent in in vitro cytotoxicity assays than SDX-101 and that they are orally efficacious in vivo (NCI/EORTC 2004 Abs #383). Our current studies further characterize the mechanism of action and safety of these analogs and identify the structures of selected analogs. Novel functional assays were developed to test and compare SDX-101 and the analogs at 4 hours post-treatment, a time before appreciable loss of viability was detected. Best results were obtained using a functional assay co-transfecting a β-catenin-dependent reporter construct (TOPFLASH) and β-catenin and RXR expression vectors. The average IC50 of analogs in this β-catenin reporter system ranged from 50 to 160 μM. These values were approximately five- to ten- fold lower than the IC50 for SDX-101 (~700 μM). Similar results were obtained assessing the inhibition of PPAR-γ-mediated transcription, using a PPAR-dependent reporter and co-transfection with PPAR-γ and RXR expression vectors. The average IC50s of the analogs ranged from 50–150 μM in this functional assay, demonstrating an approximately 10-fold increase in potency of the analogs when compared to SDX-101 (~1000 μM). No effect was observed at the 4 hour time point using a constitutive SV40-based control reporter vector. These results suggest that the primary target for these compounds may be a nuclear complex containing β-catenin, PPAR-γ and RXR, supporting a hypothesis developed upon evaluation of earlier results generated with SDX-101. To evaluate the safety of two SDX-101 analogs in vivo, normal mice were administered each analog at 240, 120 and 60 mg/kg/d (M-F) for four weeks. Mortality, morbidity, clinical signs, hematology/chemistry were monitored. There were no mortalities, overt toxicities or abnormal observations at necropsy with either of the analogs at any of the tested dose levels. There was a transient body weight loss (<5%) and a mild dose-independent increase in platelets and a reversible decrease in total bilirubin. Results of the histopathological examination of critical organs are pending. These results suggest, when given at doses previously shown to be efficacious in a DAUDI murine lymphoma model, these analogs were well tolerated. In conclusion, these data demonstrate that the second generation analogs of SDX-101 display more potent in vitro and in vivo activity while retaining a mechanism of action similar to that of SDX-101.


2007 ◽  
Vol 66 (3) ◽  
pp. 458-469 ◽  
Author(s):  
Ralph Rühl

Carotenoids and retinoids are groups of nutritionally-relevant compounds present in many foods of plant origin (carotenoids) and animal origin (mainly retinoids). Their levels in human subjects vary depending on the diversity and amount of the individual's nutrient intake. Some carotenoids and retinoids have been investigated for their effects on the immune system bothin vitroandin vivo. It has been shown that retinoids have the potential to mediate or induce proliferative and differentiating effects on several immune-competent cells, and various carotenoids are known to be inducers of immune function. The immune-modulating effects of retinoids have been well documented, while the effects of carotenoids on the immune system have not been investigated as extensively, because little is known about their molecular mechanism of action. The present review will mainly focus on the molecular mechanism of action of retinoids and particularly carotenoids, their nutritional origin and intake, their transfer from the maternal diet to the child and their effects or potential effects on the developing immune system.


Parasitology ◽  
2016 ◽  
Vol 143 (4) ◽  
pp. 507-517 ◽  
Author(s):  
T. MATA-SANTOS ◽  
H. A. MATA-SANTOS ◽  
P. F. CARNEIRO ◽  
K. C. G. DE MOURA ◽  
J. M. FENALTI ◽  
...  

SUMMARYHuman toxocarosis is a chronic tissue parasitosis most often caused by Toxocara canis. The seroprevalence can reach up to 50%, especially among children and adolescents. The anthelmintics used in the treatment have moderate efficacy. The aim of this study was to evaluate the in vitro and in vivo anthelmintic activity of quinones and their derivatives against T. canis larvae and the cytotoxicity of the larvicidal compounds. The compounds were evaluated at 1 mg mL−1 concentration in microculture plates containing third stage larvae in an Roswell Park Memorial Institute (RPMI) 1640 environment, incubated at 37 °C in 5% CO2 tension for 48 h. Five naphthoxiranes were selected for the cytotoxicity analysis. The cell viability evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays using murine peritoneal macrophages isolated from C57BL/6 mice revealed that the naphthoxiranes (1 and 3) were less cytotoxic at a concentration of 0·05 mg mL−1. The efficacy of naphthoxiranes (1 and 3) was examined in murine toxocarosis also. The anthelmintic activity was examined by evaluating the number of larvae in the brain, carcass, liver, lungs, heart, kidneys and eyes. Compound (3) demonstrated anthelmintic activity similar to that of albendazole by decreasing the number of larvae in the organs of mice and thus could form the basis of the development of a new anthelmintic drug.


2007 ◽  
Vol 75 (11) ◽  
pp. 5085-5094 ◽  
Author(s):  
Anna Rachini ◽  
Donatella Pietrella ◽  
Patrizia Lupo ◽  
Antonella Torosantucci ◽  
Paola Chiani ◽  
...  

ABSTRACT In this study we tested the in vitro and in vivo anti-Cryptococcus neoformans activity of an antilaminarin (anti-β-glucan) monoclonal antibody (MAb 2G8) (immunoglobulin G2b) which was previously shown to inhibit the growth of β-glucan-exposing Candida albicans cells. Here we show that MAb 2G8 binds to the cell wall of C. neoformans and inhibits its growth to an extent comparable to that observed for C. albicans. Binding and growth inhibition were detected almost equally for encapsulated and acapsular C. neoformans strains. In addition, at subinhibitory concentrations, MAb 2G8 reduced the capsule thickness without affecting protease or phospholipase production. Acapsular fungal cells, but not encapsulated fungal cells, were opsonized by the antibody and more efficiently phagocytosed and killed by human monocytes and by murine peritoneal macrophages. A single administration of MAb 2G8 resulted in a reduction in the fungal burden in the brains and livers of mice systemically infected with a highly virulent, encapsulated C. neoformans strain. This protective effect was also detected in neutropenic mice. Overall, these findings demonstrate that cell wall β-glucan of encapsulated C. neoformans is accessible to antibodies which can exert remarkable anticryptococcal activities in vitro and in vivo.


2016 ◽  
Vol 206 (6) ◽  
pp. 1222-1232 ◽  
Author(s):  
Daniele Marin ◽  
Juan Carlos Ramirez-Giraldo ◽  
Sonia Gupta ◽  
Wanyi Fu ◽  
Sandra S. Stinnett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document