A Novel Method of Data Collection for Automated Electron Tomography Based upon Pre-cal1bration of Image Shifts and Defocus Changes

2001 ◽  
Vol 7 (S2) ◽  
pp. 78-79
Author(s):  
Ulrike Ziese ◽  
Ries Janssen ◽  
Willie Geerts ◽  
Theo van der Krift ◽  
Auke van Balen ◽  
...  

Electron tomography is a three-dimensional (3D) imaging method with transmission electron microscopy (TEM) that provides high-resolution 3D images of structural arrangements. with electron tomography a series of images is acquired of a sample that is tilted over a large angular range (±70°) with small angular tilt increments. For the 3D-reconstruction, the images of the tilt series are aligned relative to each other and the 3D-reconstruction is computed. Electron tomography is the only technique that can provide 3D information with nm-scale resolution of individual and unique samples. Routine application of electron tomography will comprise a major step forward in the characterization of complex materials and cellular arrangements. When collecting tilt series for electron tomography image shifts and defocus changes have to be corrected for by the human operator. The repetitive correction of these changes is highly time consuming, error prone and very hard to carry out under low-dose imaging conditions.Many practical problems are overcome when electron tomography data collection is performed in an automated fashion. Automation includes the (a) image acquisition on a (digital) CCD camera, which implies that (b) changes in image position and defocus can be detected by on-line image processing and (c) immediately be corrected for by computer control of the microscope, (d) Finally, tilt series are directly available in digital format for subsequent processing. Typically, carrying out such an experiment would take a day, and the actual data collection 2-4 hours. in spite of the enormous progress made in terms of data collection speed during the last few years, the current status of automated tomography still does not meet the requirements that would make it a routinely applicable tool. For a great number of biological assays and research projects, results obtained under different experimental conditions have to be compared, and series of experiments have to be carried out. Therefore, we propose a novel approach for recording a tilt series that significantly increases data collection speed, and widens the applicability of the technique.

2000 ◽  
Vol 6 (S2) ◽  
pp. 1148-1149
Author(s):  
U. Ziese ◽  
A.H. Janssen ◽  
T.P. van der Krift ◽  
A.G. van Balen ◽  
W.J. de Ruijter ◽  
...  

Electron tomography is a three-dimensional (3D) imaging method with transmission electron microscopy (TEM) that provides high-resolution 3D images of structural arrangements. Conventional TEM images are in first approximation mere 2D-projections of a 3D sample under investigation. With electron tomographya series of images is acquired of a sample that is tilted over a large angular range (±70°) with small angular tilt increments (so called tilt-series). For the subsequent 3D-reconstruction, the images of the tilt series are aligned relative to each other and the 3D-reconstruction is computed. Electron tomography is the only technique that can provide true 3D information with nm-scale resolution of individual and unique samples. For (cell) biology and material science applications the availability of high-resolution 3D images of structural arrangements within individual samples provides unique architectural information that cannot be obtained otherwise. Routine application of electron tomography will comprise a major revolutionary step forward in the characterization of complex materials and cellular arrangements.


Author(s):  
D.A. Agard ◽  
A.J. Koster ◽  
M.B. Braunfeld ◽  
J.W. Sedat

Three-dimensional imaging has become an important addition to the variety of methods available for research on biological structures. Non-crystalline samples can be examined by high resolution electron tomography which requires that projection data be collected over a large range of specimen tilts. Practical limitations of tomography are set by the large number of micrographs to be processed, and by the required (and tedious) recentering and refocusing of the object during data collection; especially for dose sensitive specimens. With automated electron tomography a number of these problems can be overcome. First, the images are recorded directly in digital format, using a cooled slow scan CCD camera, and, with automatic tracking and correction for image shift and focus variation, a pre-aligned dataset is obtained, with every image recorded under well defined imaging conditions.At UCSF, we use intermediate voltage electron tomography to study higher-order chromatin structure. Of central interest is elucidating the higher-order arrangement of the 30nm chromatin fiber within condensed chromosomes through several phases of the cell cycle and, in collaboration with Chris Woodcock, the structure of the 30 nm fiber.


Author(s):  
Weiping Liu ◽  
Jennifer Fung ◽  
W.J. de Ruijter ◽  
Hans Chen ◽  
John W. Sedat ◽  
...  

Electron tomography is a technique where many projections of an object are collected from the transmission electron microscope (TEM), and are then used to reconstruct the object in its entirety, allowing internal structure to be viewed. As vital as is the 3-D structural information and with no other 3-D imaging technique to compete in its resolution range, electron tomography of amorphous structures has been exercised only sporadically over the last ten years. Its general lack of popularity can be attributed to the tediousness of the entire process starting from the data collection, image processing for reconstruction, and extending to the 3-D image analysis. We have been investing effort to automate all aspects of electron tomography. Our systems of data collection and tomographic image processing will be briefly described.To date, we have developed a second generation automated data collection system based on an SGI workstation (Fig. 1) (The previous version used a micro VAX). The computer takes full control of the microscope operations with its graphical menu driven environment. This is made possible by the direct digital recording of images using the CCD camera.


Author(s):  
Jian-Shing Luo ◽  
Chia-Chi Huang ◽  
Jeremy D. Russell

Abstract Electron tomography includes four main steps: tomography data acquisition, image processing, 3D reconstruction, and visualization. After acquisition, tilt-series alignments are performed. Two methods are used to align the tilt-series: cross-correlation and feature tracking. Normally, about 10-20 nm of fiducial markers, such as gold beads, are deposited onto one side of 100 mesh carbon-coated grids during the feature-tracking process. This paper presents a novel method for preparing electron tomography samples with gold beads inside to improve the feature tracking process and quality of 3D reconstruction. Results show that the novel electron tomography sample preparation method improves image alignment, which is essential for successful tomography in many contemporary semiconductor device structures.


2001 ◽  
Vol 7 (S2) ◽  
pp. 88-89
Author(s):  
Ingo Daberkow ◽  
Bernhard Feja ◽  
Peter Sparlinek ◽  
Hans R. Tietz

During the last decade, computation of a three-dimensional image from a tilt series (3D reconstruction) has become a well established method, of which a variety of implementations are available. The term “electron tomography” is now generally used for this type of data acquisition and 3D reconstruction. An overview over the techniques involved is given in.With the introduction of micro-processor-controlled TEMs and cooled slow-scan CCD cameras and with the progress in performance of high-speed computers, automation of complex imaging procedures became mainly a task of developing appropriate software, using the control facilities of the microscope. in this way, automated electron tomography was realized in 1990 at the Max- Planck-Institute for Biochemistry in Martinsried, and at about the same time at the University of California in San Francisco (UCSF). New techniques for automatic focusing and alignment, developed somewhat earlier , have been integrated in these automated tomography procedures. in the following we discuss the requirements of automatic data acquisition and the present implementation for several TEMs.


2014 ◽  
Vol 70 (a1) ◽  
pp. C333-C333 ◽  
Author(s):  
Kunio Hirata ◽  
Yoshiaki Kawano ◽  
Keitaro Yamashita ◽  
Go Ueno ◽  
Takaaki Hikima ◽  
...  

Protein micro-crystallography is one of the most advanced technologies for protein structure analysis. In order to realize this, an undulator beamline, named BL32XU, was constructed at SPring-8. The beamline can provide beam with size of 0.9 x 0.9 µm and photon flux of 6E10 photons/s. The beam size can be easily changed by users from 1 to 10 µm square with the same flux density. Through three years user operation, we have established several key systems for efficient protein micro-crystallography. One of them is the software for precise positioning of micro-crystals in `raster scan'. SHIKA is a program with GUI which searches diffraction spots in a plenty of low dose diffraction images obtained in raster scan. Finally, it generates 2D map of crystal positions based on the number of spots or spot intensities. Parameters and thresholds in peak search have been empirically optimized for LCP crystals and it provides robust results. Another system is for the data collection strategy. Almost all successful data collections were conducted via `helical data collection' on BL32XU using the line-focused beam. The GUI software, named KUMA, enables estimation of an accumulated dose and suggests suitable experimental conditions for helical data collection. The system is proven to be useful for experimental phasing using tiny LCP crystals of membrane proteins[1-3]. Based on them, the rapid and automatic data collection system using protein micro-crystals is under development. The new CCD detector, Rayonix MX225HS, was installed for faster data acquisition in 10 Hz with the pixel size of 78 µm square. The new SHIKA using GPUs is under development for faster and more accurate crystal alignment. Following this step, KUMA system can suggest experimental conditions for each crystal found on the loop. We also report about the effects of higher dose rate in protein crystallography up to the order of 100 MGy/s. This work was supported by Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology, Japan.


Author(s):  
A.J. Koster ◽  
H. Chen ◽  
W. Clyborne ◽  
J.W. Sedat ◽  
D.A. Agard

One of the driving questions in our group is into understanding how chromosomes are constructed from fibers of DNA wrapped around histones in their native form. To permit high resolution analysis of these highly complex fibers, we use intermediate voltage electron tomography. To obtain 50Å resolutions, we incorporate new approaches to overcome the resolution limiting factors determined by specimen fixation and staining techniques, data collection and 3D reconstruction algorithms.With our present instrumentation we can automatically collect a series of projection data of large, radiation sensitive objects with only a minimum of manual operation, with high accuracy and consistency. The images are recorded directly in digital format to overcome the time consuming task of digitizing negatives. Furthermore, the system offers automated eucentricity setting, automatic tracking of image shifts, and automatic focusing during data collection. Highly reliable data collection is ensured by closely monitoring the variation in image shift, defocus, average image intensity, and exposure time throughout the tilt series.


1999 ◽  
Vol 5 (S2) ◽  
pp. 452-453
Author(s):  
D. Nicastro ◽  
A. S. Frangakis ◽  
S. Nickell ◽  
W. Baumeister

Electron tomography is the most widely applicable method for obtaining three-dimensional information by electron microscopy. It is, in fact, the only method suitable for investigating pleomorphic structures, such as many supramolecular assemblies, organelles and cells. With the recent development of automated low-dose data-acquisition schemes, it is now possible to study molecules and cells embedded in vitreous ice. This opens up new horizons for investigating the functional organization of cellular components with minimal perturbation of the cellular context.In the present study we used automated electron tomography in conjunction with cryomicroscopy to reveal the internal organization and ultrastructure of mitochondria. The whole isolated cell organelles from Neurospora crassa were quick-frozen and examined in vitrified ice. Single-axis tilt series were recorded with a Philips CM 120 Biotwin under low-dose conditions; the estimated total exposure was 10,000 e−nm−2. The tilt increment was 1° and the tilt series ranged from −65° to +65°. In order to enhance the contrast of the rather thick samples zero-loss energy filtering was employed. The images were recorded with a Ik × Ik CCD camera. The experimental setup has been described by Koster et al2 Three-dimensional reconstructions were performed by weighted backprojection. Prior to the three-dimensional visualization of 3-D data sets a denoising technique based on nonlinear anisotropic diffusion was applied (Figs. 2, 3).


2020 ◽  
Author(s):  
Jonathan Bouvette ◽  
Hsuan-Fu Liu ◽  
Xiaochen Du ◽  
Ye Zhou ◽  
Andrew P. Sikkema ◽  
...  

ABSTRACTTomographic reconstruction of cryopreserved specimens imaged in an electron microscope followed by extraction and averaging of sub-volumes has been successfully used to derive atomic models of macromolecules in their biological environment. Eliminating biochemical isolation steps required by other techniques, this method opens up the cell to in-situ structural studies. However, the need to compensate for errors in targeting introduced during mechanical navigation of the specimen significantly slows down tomographic data collection thus limiting its practical value. Here, we introduce protocols for tilt-series acquisition and processing that accelerate data collection speed by an order of magnitude and improve map resolution by ~1-3 Å compared to existing approaches. We achieve this by using beam-image shift to multiply the number of areas imaged at each stage position, by integrating geometrical constraints during imaging to achieve high precision targeting, and by performing per-tilt astigmatic CTF estimation and data-driven exposure weighting to improve final map resolution. We validated our beam image-shift electron cryo-tomography (BISECT) approach by determining the structure of a low molecular weight target (~300kDa) at 3.6 Å resolution where density for individual side chains is clearly resolved.


Sign in / Sign up

Export Citation Format

Share Document