Tissue Culture and Explant Approaches to Studying and VisualizingNeospora caninumand Its Interactions with the Host Cell

2004 ◽  
Vol 10 (5) ◽  
pp. 602-620 ◽  
Author(s):  
Andrew Hemphill ◽  
Nathalie Vonlaufen ◽  
Arunasalam Naguleswaran ◽  
Nadine Keller ◽  
Michele Riesen ◽  
...  

Neospora caninumis an apicomplexan parasite first mentioned in 1984 as a causative agent of neuromuscular disease in dogs. It is closely related toToxoplasma gondiiandHammondia heydorni, and its subsequent description in 1988 has been, and still is, accompanied by discussions on the true phylogenetical status of the genusNeospora.N. caninumexhibits features that clearly distinguish this parasite from other members of the Apicomplexa, including distinct ultrastructural properties, genetic background, antigenic composition, host cell interactions, and the definition of the dog as a final host. Most importantly,N. caninumhas a particular significance as a cause of abortion in cattle.In vitroculture has been indispensable for the isolation of this parasite and for investigations on the ultrastructural, cellular, and molecular characteristics of the different stages ofN. caninum. Tissue culture systems include maintenance ofN. caninumtachyzoites, which represent the rapidly proliferating stage in a large number of mammalian host cells, culture of parasites in organotypic brain slice cultures as a tool to investigate cerebral infection byN. caninum, and the use of techniques to induce the stage conversion from the tachyzoite stage to the slowly proliferating and tissue cyst-forming bradyzoite stage. This review will focus on the use of these tissue culture models as well as light- and electron-microscopical techniques for studies onN. caninumtachyzoites and bradyzoites, and on the physical interactions between parasites and host cells.

Parasitology ◽  
2006 ◽  
Vol 133 (3) ◽  
pp. 261-278 ◽  
Author(s):  
A. HEMPHILL ◽  
N. VONLAUFEN ◽  
A. NAGULESWARAN

Neospora caninumis an apicomplexan parasite that is closely related toToxoplasma gondii, the causative agent of toxoplasmosis in humans and domestic animals. However, in contrast toT. gondii, N. caninumrepresents a major cause of abortion in cattle, pointing towards distinct differences in the biology of these two species. There are 3 distinct key features that represent potential targets for prevention of infection or intervention against disease caused byN. caninum. Firstly, tachyzoites are capable of infecting a large variety of host cellsin vitroandin vivo. Secondly, the parasite exploits its ability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite orvice versa). Thirdly, by analogy withT. gondii, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long-term survival of not only the parasite but also of the host cell. In order to elucidate the molecular and cellular bases of these important features ofN. caninum, cell culture-based approaches and laboratory animal models are being exploited. In this review, we will summarize the current achievements related to host cell and parasite cell biology, and will discuss potential applications for prevention of infection and/or disease by reviewing corresponding work performed in murine laboratory infection models and in cattle.


Parasitology ◽  
2013 ◽  
Vol 140 (8) ◽  
pp. 1033-1050 ◽  
Author(s):  
FERIAL ALAEDDINE ◽  
ANDREW HEMPHILL ◽  
KARIM DEBACHE ◽  
CHRISTOPHE GUIONAUD

SUMMARYRecent publications demonstrated that a fragment of aNeospora caninumROP2 family member antigen represents a promising vaccine candidate. We here report on the cloning of the cDNA encoding this protein,N. caninumROP2 family member 1 (NcROP2Fam-1), its molecular characterization and localization. The protein possesses the hallmarks of ROP2 family members and is apparently devoid of catalytic activity. NcROP2Fam-1 is synthesized as a pre-pro-protein that is matured to 2 proteins of 49 and 55 kDa that localize to rhoptry bulbs. Upon invasion the protein is associated with the nascent parasitophorous vacuole membrane (PVM), evacuoles surrounding the host cell nucleus and, in some instances, the surface of intracellular parasites. Staining was also observed within the cyst wall of ‘cysts’ producedin vitro. Interestingly, NcROP2Fam-1 was also detected on the surface of extracellular parasites entering the host cells and antibodies directed against NcROP2Fam-1-specific peptides partially neutralized invasionin vitro. We conclude that, in spite of the general belief that ROP2 family proteins are intracellular antigens, NcROP2Fam-1 can also be considered as an extracellular antigen, a property that should be taken into account in further experiments employing ROP2 family proteins as vaccines.


2000 ◽  
Vol 355 (1397) ◽  
pp. 623-631 ◽  
Author(s):  
B. Brett Finlay ◽  
John H. Brumell

Salmonellosis (diseases caused by Salmonella species) have several clinical manifestations, ranging from gastroenteritis (food poisoning) to typhoid (enteric) fever and bacteraemia. Salmonella species (especially Salmonella typhimurium ) also represent organisms that can be readily used to investigate the complex interplay that occurs between a pathogen and its host, both in vitro and in vivo. The ease with which S. typhimurium can be cultivated and genetically manipulated, in combination with the availability of tissue culture models and animal models, has made S. typhimurium a desirable organism for such studies. In this review, we focus on Salmonella interactions with its host cells, both in tissue culture ( in vitro ) and in relevant animal models (in vivo), and compare results obtained using these different models. The recent advent of sophisticated imaging and molecular genetic tools has facilitated studying the events that occur in disease, thereby confirming tissue culture results, yet identifying new questions that need to be addressed in relevant disease settings.


2004 ◽  
Vol 72 (1) ◽  
pp. 576-583 ◽  
Author(s):  
Nathalie Vonlaufen ◽  
Nicole Guetg ◽  
Arunasalam Naguleswaran ◽  
Norbert Müller ◽  
Camilla Björkman ◽  
...  

ABSTRACT We report on an optimized method for the in vitro culture of tissue cyst-forming Neospora caninum bradyzoites in Vero cells and the separation of viable parasites from host cells. Treatment of tachyzoite-infected Vero cell cultures with 17 μM sodium nitroprusside for 8 days severely scaled down parasite proliferation, led to reduced expression of tachyzoite surface antigens, and induced the expression of the bradyzoite marker NcBAG1 and the cyst wall antigen recognized by the monoclonal antibody MAbCC2. Transmission electron microscopy demonstrated that intracellular parasites were located within parasitophorous vacuoles that were surrounded by a cyst wall-like structure, and the dense granule antigens NcGRA1, NcGRA2, and NcGRA7 were incorporated into the cyst wall. Adhesion-invasion assays employing purified tachyzoites and bradyzoites showed that tachyzoites adhered to, and invaded, Vero cells with higher efficiency than bradyzoites. However, removal of terminal sialic acid residues from either the host cell or the parasite surface increased the invasion of Vero cells by bradyzoites, but not tachyzoites.


2006 ◽  
Vol 51 (1) ◽  
Author(s):  
Andrew Hemphill ◽  
Bruno Gottstein

AbstractNeospora caninum is an apicomplexan parasite, which owes its importance to the fact that it represents the major infectious cause of bovine abortion worldwide. Its life cycle is comprised of three distinct stages: Tachyzoites, representing the proliferative and disease-causing stage, bradyzoites, representing a slowly replicating, tissue cyst-forming stage, and sporozoites, which represent the end product of a sexual process taking place within the intestinal tissue of the final canine host. Tachyzoites are capable of infecting a large variety of host cells in vitro and in vivo, while bradyzoites have been found mainly within the central nervous system. In order to survive, proliferate, and proceed in its life cycle, N. caninum has evolved some amazing features. First, the parasite profits immensely from its ability to interact with, and invade, a large number of host cell types. Secondly, N. caninum exploits its capability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite or vice versa). Thirdly, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long term survival of not only the parasite but also of the host cell. These three key events (host cell invasion — stage conversion — host cell modulation) represent potential targets for intervention. In order to elucidate the molecular and cellular bases of these important features of N. caninum, cell culture-based approaches and laboratory animal models are extensively exploited. In this review, we will summarize the present knowledge and achievements related to host cell and parasite cell biology.


2021 ◽  
Vol 9 (6) ◽  
pp. 1144
Author(s):  
Isabel Marcelino ◽  
Philippe Holzmuller ◽  
Ana Coelho ◽  
Gabriel Mazzucchelli ◽  
Bernard Fernandez ◽  
...  

The Rickettsiales Ehrlichia ruminantium, the causal agent of the fatal tick-borne disease Heartwater, induces severe damage to the vascular endothelium in ruminants. Nevertheless, E. ruminantium-induced pathobiology remains largely unknown. Our work paves the way for understanding this phenomenon by using quantitative proteomic analyses (2D-DIGE-MS/MS, 1DE-nanoLC-MS/MS and biotin-nanoUPLC-MS/MS) of host bovine aorta endothelial cells (BAE) during the in vitro bacterium intracellular replication cycle. We detect 265 bacterial proteins (including virulence factors), at all time-points of the E. ruminantium replication cycle, highlighting a dynamic bacterium–host interaction. We show that E. ruminantium infection modulates the expression of 433 host proteins: 98 being over-expressed, 161 under-expressed, 140 detected only in infected BAE cells and 34 exclusively detected in non-infected cells. Cystoscape integrated data analysis shows that these proteins lead to major changes in host cell immune responses, host cell metabolism and vesicle trafficking, with a clear involvement of inflammation-related proteins in this process. Our findings led to the first model of E. ruminantium infection in host cells in vitro, and we highlight potential biomarkers of E. ruminantium infection in endothelial cells (such as ROCK1, TMEM16K, Albumin and PTPN1), which may be important to further combat Heartwater, namely by developing non-antibiotic-based strategies.


1997 ◽  
Vol 8 (2) ◽  
pp. 175-200 ◽  
Author(s):  
H.F. Jenkinson ◽  
RJ Lamont

Streptococci express arrays of adhesins on their cell surfaces that facilitate adherence to substrates present in their natural environment within the mammalian host. A consequence of such promiscuous binding ability is that streptococcal cells may adhere simultaneously to a spectrum of substrates, including salivary glycoproteins, extracellular matrix and serum components, host cells, and other microbial cells. The multiplicity of streptococcal adherence interactions accounts, at least in part, for their success in colonizing the oral and epithelial surfaces of humans. Adhesion facilitates colonization and may be a precursor to tissue invasion and immune modulation, events that presage the development of disease. Many of the streptococcal adhesins and virulence-related factors are cell-wall-associated proteins containing repeated sequence blocks of amino acids. Linear sequences, both within the blocks and within non-repetitive regions of the proteins, have been implicated in substrate binding. Sequences and functions of these proteins among the streptococci have become assorted through gene duplication and horizontal transfer between bacterial populations. Several adhesins identified and characterized through in vitro binding assays have been analyzed for in vivo expression and function by means of animal models used for colonization and virulence. Information on the molecular structure of adhesins as related to their in vivo function will allow for the rational design of novel acellular vaccines, recombinant antibodies, and adhesion agonists for the future control or prevention of streptococcal colonization and streptococcal diseases.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1053
Author(s):  
Lidia Węglińska ◽  
Adrian Bekier ◽  
Katarzyna Dzitko ◽  
Barbara Pacholczyk-Sienicka ◽  
Łukasz Albrecht ◽  
...  

Congenital and acquired toxoplasmosis caused by the food- and water-born parasite Toxoplasma gondii (T. gondii) is one of the most prevalent zoonotic infection of global importance. T. gondii is an obligate intracellular parasite with limited capacity for extracellular survival, thus a successful, efficient and robust host cell invasion process is crucial for its survival, proliferation and transmission. In this study, we screened a series of novel 1,3,4-thiadiazole-2-halophenylamines functionalized at the C5 position with the imidazole ring (1b–12b) for their effects on T. gondii host cell invasion and proliferation. To achieve this goal, these compounds were initially subjected to in vitro assays to assess their cytotoxicity on human fibroblasts and then antiparasitic efficacy. Results showed that all of them compare favorably to control drugs sulfadiazine and trimethoprim in terms of T. gondii growth inhibition (IC50) and selectivity toward the parasite, expressed as selectivity index (SI). Subsequently, the most potent of them with meta-fluoro 2b, meta-chloro 5b, meta-bromo 8b, meta-iodo 11b and para-iodo 12b substitution were tested for their efficacy in inhibition of tachyzoites invasion and subsequent proliferation by direct action on established intracellular infection. All the compounds significantly inhibited the parasite invasion and intracellular proliferation via direct action on both tachyzoites and parasitophorous vacuoles formation. The most effective was para-iodo derivative 12b that caused reduction in the percentage of infected host cells by 44% and number of tachyzoites per vacuole by 93% compared to non-treated host cells. Collectively, these studies indicate that 1,3,4-thiadiazoles 1b–12b, especially 12b with IC50 of 4.70 µg/mL and SI of 20.89, could be considered as early hit compounds for future design and synthesis of anti-Toxoplasma agents that effectively and selectively block the invasion and subsequent proliferation of T. gondii into host cells.


2005 ◽  
Vol 77 (1) ◽  
pp. 77-94 ◽  
Author(s):  
Renato A. Mortara ◽  
Walter K. Andreoli ◽  
Noemi N. Taniwaki ◽  
Adriana B. Fernandes ◽  
Claudio V. da Silva ◽  
...  

Trypanosoma cruzi, the etiological agent of Chagas’ disease, occurs as different strains or isolates that may be grouped in two major phylogenetic lineages: T. cruzi I, associated with the sylvatic cycle and T. cruzi II, linked to the human disease. In the mammalian host the parasite has to invade cells and many studies implicated the flagellated trypomastigotes in this process. Several parasite surface components and some of host cell receptors with which they interact have been identified. Our work focused on how amastigotes, usually found growing in the cytoplasm, can invade mammalian cells with infectivities comparable to that of trypomastigotes. We found differences in cellular responses induced by amastigotes and trypomastigotes regarding cytoskeletal components and actin-rich projections. Extracellularly generated amastigotes of T. cruzi I strains may display greater infectivity than metacyclic trypomastigotes towards cultured cell lines as well as target cells that have modified expression of different classes of cellular components. Cultured host cells harboring the bacterium Coxiella burnetii allowed us to gain new insights into the trafficking properties of the different infective forms of T. cruzi, disclosing unexpected requirements for the parasite to transit between the parasitophorous vacuole to its final destination in the host cell cytoplasm.


2016 ◽  
Vol 213 (5) ◽  
pp. 809-825 ◽  
Author(s):  
Yancheng Liu ◽  
Shumin Tan ◽  
Lu Huang ◽  
Robert B. Abramovitch ◽  
Kyle H. Rohde ◽  
...  

Successful chemotherapy against Mycobacterium tuberculosis (Mtb) must eradicate the bacterium within the context of its host cell. However, our understanding of the impact of this environment on antimycobacterial drug action remains incomplete. Intriguingly, we find that Mtb in myeloid cells isolated from the lungs of experimentally infected mice exhibit tolerance to both isoniazid and rifampin to a degree proportional to the activation status of the host cells. These data are confirmed by in vitro infections of resting versus activated macrophages where cytokine-mediated activation renders Mtb tolerant to four frontline drugs. Transcriptional analysis of intracellular Mtb exposed to drugs identified a set of genes common to all four drugs. The data imply a causal linkage between a loss of fitness caused by drug action and Mtb’s sensitivity to host-derived stresses. Interestingly, the environmental context exerts a more dominant impact on Mtb gene expression than the pressure on the drugs’ primary targets. Mtb’s stress responses to drugs resemble those mobilized after cytokine activation of the host cell. Although host-derived stresses are antimicrobial in nature, they negatively affect drug efficacy. Together, our findings demonstrate that the macrophage environment dominates Mtb’s response to drug pressure and suggest novel routes for future drug discovery programs.


Sign in / Sign up

Export Citation Format

Share Document