Structure Determination of Atomically Controlled Crystal Architectures Grown within Single Wall Carbon Nanotubes

2005 ◽  
Vol 11 (5) ◽  
pp. 401-409 ◽  
Author(s):  
Angus I. Kirkland ◽  
Rüdiger R. Meyer ◽  
J. Sloan ◽  
J.L. Hutchison

Indirect high resolution electron microscopy using one of several possible data-set geometries offers advantages over conventional high-resolution imaging in enabling the recovery of the complex wavefunction at the specimen exit plane and simultaneously eliminating the aberrations present in the objective lens. This article discusses results obtained using this method from structures formed by inorganic materials confined within the bores of carbon nanotubes. Such materials are shown to be atomically regulated due to their confinement, leading to integral layer architectures that we have termed “Feynman crystals.” These one-dimensional (1D) crystals also show a wide range of structural deviations from the bulk, including unexpected lattice distortions, and in some cases entirely new forms have been observed.

Author(s):  
J.M. Cowley

By extrapolation of past experience, it would seem that the future of ultra-high resolution electron microscopy rests with the advances of electron optical engineering that are improving the instrumental stability of high voltage microscopes to achieve the theoretical resolutions of 1Å or better at 1MeV or higher energies. While these high voltage instruments will undoubtedly produce valuable results on chosen specimens, their general applicability has been questioned on the basis of the excessive radiation damage effects which may significantly modify the detailed structures of crystal defects within even the most radiation resistant materials in a period of a few seconds. Other considerations such as those of cost and convenience of use add to the inducement to consider seriously the possibilities for alternative approaches to the achievement of comparable resolutions.


Author(s):  
Y. Y. Wang ◽  
H. Zhang ◽  
V. P. Dravid ◽  
H. Zhang ◽  
L. D. Marks ◽  
...  

Azuma et al. observed planar defects in a high pressure synthesized infinitelayer compound (i.e. ACuO2 (A=cation)), which exhibits superconductivity at ~110 K. It was proposed that the defects are cation deficient and that the superconductivity in this material is related to the planar defects. In this report, we present quantitative analysis of the planar defects utilizing nanometer probe xray microanalysis, high resolution electron microscopy, and image simulation to determine the chemical composition and atomic structure of the planar defects. We propose an atomic structure model for the planar defects.Infinite-layer samples with the nominal chemical formula, (Sr1-xCax)yCuO2 (x=0.3; y=0.9,1.0,1.1), were prepared using solid state synthesized low pressure forms of (Sr1-xCax)CuO2 with additions of CuO or (Sr1-xCax)2CuO3, followed by a high pressure treatment.Quantitative x-ray microanalysis, with a 1 nm probe, was performed using a cold field emission gun TEM (Hitachi HF-2000) equipped with an Oxford Pentafet thin-window x-ray detector. The probe was positioned on the planar defects, which has a 0.74 nm width, and x-ray emission spectra from the defects were compared with those obtained from vicinity regions.


Author(s):  
K. Ishizuka ◽  
K. Shirota

In a conventional alignment for high-resolution electron microscopy, the specimen point imaged at the viewing-screen center is made dispersion-free against a voltage fluctuation by adjusting the incident beam direction using the beam deflector. For high-resolution works the voltage-center alignment is important, since this alignment reduces the chromatic aberration. On the other hand, the coma-free alignment is also indispensable for high-resolution electron microscopy. This is because even a small misalignment of the incident beam direction induces wave aberrations and affects the appearance of high resolution electron micrographs. Some alignment procedures which cancel out the coma by changing the incident beam direction have been proposed. Most recently, the effect of a three-fold astigmatism on the coma-free alignment has been revealed, and new algorithms of coma-free alignment have been proposed.However, the voltage-center and the coma-free alignments as well as the current-center alignment in general do not coincide to each other because of beam deflection due to a leakage field within the objective lens, even if the main magnetic-field of the objective lens is rotationally symmetric. Since all the proposed procedures for the coma-free alignment also use the same beam deflector above the objective lens that is used for the voltage-center alignment, the coma-free alignment is only attained at the sacrifice of the voltage-center alignment.


Author(s):  
Kiyomichi Nakai ◽  
Yusuke Isobe ◽  
Chiken Kinoshita ◽  
Kazutoshi Shinohara

Induced spinodal decomposition under electron irradiation in a Ni-Au alloy has been investigated with respect to its basic mechanism and confirmed to be caused by the relaxation of coherent strain associated with modulated structure. Modulation of white-dots on structure images of modulated structure due to high-resolution electron microscopy is reduced with irradiation. In this paper the atom arrangement of the modulated structure is confirmed with computer simulation on the structure images, and the relaxation of the coherent strain is concluded to be due to the reduction of phase-modulation.Structure images of three-dimensional modulated structure along <100> were taken with the JEM-4000EX high-resolution electron microscope at the HVEM Laboratory, Kyushu University. The transmitted beam and four 200 reflections with their satellites from the modulated structure in an fee Ni-30.0at%Au alloy under illumination of 400keV electrons were used for the structure images under a condition of the spherical aberration constant of the objective lens, Cs = 1mm, the divergence of the beam, α = 3 × 10-4 rad, underfocus, Δf ≃ -50nm and specimen thickness, t ≃ 15nm. The CIHRTEM code was used for the simulation of the structure image.


1999 ◽  
Vol 14 (4) ◽  
pp. 1175-1177 ◽  
Author(s):  
Jing Zhu ◽  
Shoushan Fan

The nanostructure of GaN and SiC nanowires produced by carbon nanotube confined reaction has been studied by means of high-resolution electron microscopy, microanalysis, and microdiffraction. The GaN nanowire is a single crystal with fewer defects and the SiC nanowire is a β–SiC crystal with heavy layer sequence faults. Considering experimental results, a possible reaction path for making GaN is suggested.


2012 ◽  
Vol 1 (5) ◽  
pp. 389-425 ◽  
Author(s):  
Takeo Oku

AbstractHigh-resolution electron microscopy (HREM) analysis has contributed to the direct structure analysis of advanced nanostructured materials, of which the properties of these materials are strongly dependent on the atomic arrangements. In the present article, the direct structure analysis of nanostructured materials such as boride and oxide materials was described and the high-resolution imaging methods were applied to boron nitride nanomaterials such as nanotubes and nanoparticles. An aberration correction technique is also expected as an advanced nanostructure analysis with higher resolution. The HREM image of TlBa2Ca3Cu4O11 was taken with the incident beam parallel to the a axis together with a structure model after image processing.


Sign in / Sign up

Export Citation Format

Share Document