Minerals and Aligned Collagen Fibrils in Tilapia Fish Scales: Structural Analysis Using Dark-Field and Energy-Filtered Transmission Electron Microscopy and Electron Tomography

2011 ◽  
Vol 17 (5) ◽  
pp. 788-798 ◽  
Author(s):  
Mitsuhiro Okuda ◽  
Nobuhiro Ogawa ◽  
Masaki Takeguchi ◽  
Ayako Hashimoto ◽  
Motohiro Tagaya ◽  
...  

AbstractThe mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.

2009 ◽  
Vol 15 (S2) ◽  
pp. 1082-1083
Author(s):  
D Masiel ◽  
B Reed ◽  
T LaGrange ◽  
ND Browning

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


1987 ◽  
Vol 103 ◽  
Author(s):  
W. M. Stobbs

ABSTRACTT.E.M. methods are described for the quantitative characterisation of the compositional and structural changes at interfaces and in homo- and hetero-phase multilayer structures. Many of the newer approaches described including the Fresnel and Centre Stop Dark Field Imaging Methods were developed specifically for such characterisations. The range of applications of each of the techniques is assessed as is the importance of delineating the limiting effects of inelastic and inelastic/elastic multiple scattering.


2012 ◽  
Vol 9 (73) ◽  
pp. 1774-1786 ◽  
Author(s):  
Benjamin Alexander ◽  
Tyrone L. Daulton ◽  
Guy M. Genin ◽  
Justin Lipner ◽  
Jill D. Pasteris ◽  
...  

The nanometre-scale structure of collagen and bioapatite within bone establishes bone's physical properties, including strength and toughness. However, the nanostructural organization within bone is not well known and is debated. Widely accepted models hypothesize that apatite mineral (‘bioapatite’) is present predominantly inside collagen fibrils: in ‘gap channels’ between abutting collagen molecules, and in ‘intermolecular spaces’ between adjacent collagen molecules. However, recent studies report evidence of substantial extrafibrillar bioapatite, challenging this hypothesis. We studied the nanostructure of bioapatite and collagen in mouse bones by scanning transmission electron microscopy (STEM) using electron energy loss spectroscopy and high-angle annular dark-field imaging. Additionally, we developed a steric model to estimate the packing density of bioapatite within gap channels. Our steric model and STEM results constrain the fraction of total bioapatite in bone that is distributed within fibrils at less than or equal to 0.42 inside gap channels and less than or equal to 0.28 inside intermolecular overlap regions. Therefore, a significant fraction of bone's bioapatite (greater than or equal to 0.3) must be external to the fibrils. Furthermore, we observe extrafibrillar bioapatite between non-mineralized collagen fibrils, suggesting that initial bioapatite nucleation and growth are not confined to the gap channels as hypothesized in some models. These results have important implications for the mechanics of partially mineralized and developing tissues.


1999 ◽  
Vol 14 (4) ◽  
pp. 1645-1652 ◽  
Author(s):  
Toshiki Shimizu ◽  
Masaki Tsuji ◽  
Shinzo Kohjiya

Thin films of polychloroprene (CR; Neoprene-W) were made by casting its solution (2.0 wt%) in benzene onto the water surface, and some of them were stretched by a desired amount of strain (ε) in their “molten” state. The specimens thus prepared were then crystallized and examined by transmission electron microscopy. Morphological observations in bright- and dark-field imaging modes and selected-area electron diffraction analysis revealed directly that filamentous entities observed in the bright-field image are the edge-on lamellar crystals. It was, therefore, confirmed that the morphological results obtained from the thin specimens of CR without any electron staining are basically in accord with those reported so far for the OsO4-stained thin films of CR.


1999 ◽  
Vol 5 (6) ◽  
pp. 420-427 ◽  
Author(s):  
U. Kaiser ◽  
A. Chuvilin ◽  
P.D. Brown ◽  
W. Richter

Abstract: High-resolution transmission electron microscopy (HRTEM) images of the [1–10] zone of cubic SiC layers grown by molecular beam epitaxy (MBE) often reveal regions of material exhibiting an unusual threefold periodicity. The same contrast was found in earlier works of Jepps and Page, who attributed this contrast in HRTEM images of polycrystalline SiC to the 9R-SiC polytype. In this report we demonstrate by HRTEM image simulations that the model of the 9R polytype and an alternative twinning model can fit qualitatively the experimental HRTEM images. However, by comparing the fast Fourier transform (FFT) patterns of the experiments and the simulations, as well as by using dark-field imaging, we show unambiguously that only the model of overlapping twinned 3C-SiC crystals fully agrees with the experiments.


2009 ◽  
Vol 24 (8) ◽  
pp. 2596-2604 ◽  
Author(s):  
Sašo Šturm ◽  
Makoto Shiojiri ◽  
Miran Čeh

The microstructure in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics is strongly affected by the formation of Ruddlesden-Popper fault–rich (RP fault) lamellae, which are coherently intergrown with the matrix of the perovskite grains. We studied the structure and chemistry of RP faults by applying quantitative high-resolution transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy analyses. We showed that the Sr2+ and Ca2+ dopant ions form RP faults during the initial stage of sintering. The final microstructure showed preferentially grown RP fault lamellae embedded in the central part of the anisotropic perovskite grains. In contrast, the dopant Ba2+ ions preferably substituted for Sr2+ in the SrTiO3 matrix by forming a BaxSr1−xTiO3 solid solution. The surplus of Sr2+ ions was compensated structurally in the later stages of sintering by the formation of SrO-rich RP faults. The resulting microstructure showed RP fault lamellae located at the surface of equiaxed BaxSr1-xTiO3 perovskite grains.


2006 ◽  
Vol 503-504 ◽  
pp. 603-608
Author(s):  
Koji Inoke ◽  
Kenji Kaneko ◽  
Z. Horita

A significant change in microstructure occurs during the application of severe plastic deformation (SPD) such as by equal-channel angular pressing (ECAP). In this study, intense plastic strain was imposed on an Al-10.8wt%Ag alloy by the ECAP process. The amount of strain was controlled by the numbers of passes. After 1 pass of ECAP, shear bands became visible within the matrix. With increasing numbers of ECAP passes, the fraction of shear bands was increased. In this study, the change in microstructures was examined by three-dimensional electron tomography (3D-ET) in transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM). With this 3D-ET method, it was possible to conduct a precise analysis of the sizes, widths and distributions of the shear bands produced by the ECAP process. It is demonstrated that the 3D-ET method is promising to understand mechanisms of microstructural refinement using the ECAP process.


Sign in / Sign up

Export Citation Format

Share Document