Crystalline Morphologies of Polychloroprene Thin Films as Revealed by Transmission Electron Microscopy Observation

1999 ◽  
Vol 14 (4) ◽  
pp. 1645-1652 ◽  
Author(s):  
Toshiki Shimizu ◽  
Masaki Tsuji ◽  
Shinzo Kohjiya

Thin films of polychloroprene (CR; Neoprene-W) were made by casting its solution (2.0 wt%) in benzene onto the water surface, and some of them were stretched by a desired amount of strain (ε) in their “molten” state. The specimens thus prepared were then crystallized and examined by transmission electron microscopy. Morphological observations in bright- and dark-field imaging modes and selected-area electron diffraction analysis revealed directly that filamentous entities observed in the bright-field image are the edge-on lamellar crystals. It was, therefore, confirmed that the morphological results obtained from the thin specimens of CR without any electron staining are basically in accord with those reported so far for the OsO4-stained thin films of CR.

2009 ◽  
Vol 15 (S2) ◽  
pp. 1082-1083
Author(s):  
D Masiel ◽  
B Reed ◽  
T LaGrange ◽  
ND Browning

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


1987 ◽  
Vol 103 ◽  
Author(s):  
W. M. Stobbs

ABSTRACTT.E.M. methods are described for the quantitative characterisation of the compositional and structural changes at interfaces and in homo- and hetero-phase multilayer structures. Many of the newer approaches described including the Fresnel and Centre Stop Dark Field Imaging Methods were developed specifically for such characterisations. The range of applications of each of the techniques is assessed as is the importance of delineating the limiting effects of inelastic and inelastic/elastic multiple scattering.


1999 ◽  
Vol 5 (6) ◽  
pp. 420-427 ◽  
Author(s):  
U. Kaiser ◽  
A. Chuvilin ◽  
P.D. Brown ◽  
W. Richter

Abstract: High-resolution transmission electron microscopy (HRTEM) images of the [1–10] zone of cubic SiC layers grown by molecular beam epitaxy (MBE) often reveal regions of material exhibiting an unusual threefold periodicity. The same contrast was found in earlier works of Jepps and Page, who attributed this contrast in HRTEM images of polycrystalline SiC to the 9R-SiC polytype. In this report we demonstrate by HRTEM image simulations that the model of the 9R polytype and an alternative twinning model can fit qualitatively the experimental HRTEM images. However, by comparing the fast Fourier transform (FFT) patterns of the experiments and the simulations, as well as by using dark-field imaging, we show unambiguously that only the model of overlapping twinned 3C-SiC crystals fully agrees with the experiments.


2011 ◽  
Vol 17 (5) ◽  
pp. 788-798 ◽  
Author(s):  
Mitsuhiro Okuda ◽  
Nobuhiro Ogawa ◽  
Masaki Takeguchi ◽  
Ayako Hashimoto ◽  
Motohiro Tagaya ◽  
...  

AbstractThe mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.


1981 ◽  
Vol 10 ◽  
Author(s):  
L. J. Chen ◽  
J. W. Mayer ◽  
K. N. Tu

Transmission electron microscopy has been applied to study the formation and structure of epitaxial NiSi2 and CoSi2 thin films on silicon. Bright field and dark field imaging reveal the interface planes of faceted silicides through the strain contrast, analogous to the contrast of the precipitate-matrix interface of coherent or semicoherent precipitates. Superlattice dark field imaging depicts the distribution of twin-related and epitaxial silicides in these systems. { 111 } interfaces were found to be more prominent than {001} interfaces. Twin-related silicides were observed to cover more area on the substrate silicon than epitaxial silicides did.In situ annealing of nickel and cobalt thin films on silicon provides a unique means of investigation of the transformation from polycrystalline to epitaxial silicides. The NiSi2 transformation was found to be very rapid at 820°C, whereas the CoSi2 transformation appeared to be very sluggish. Furnace annealing confirmed that only a small fraction of CoSi2 transforms to epitaxial CoSi2 after annealing at 850°C for 4h.Diffraction contrast analysis has been applied to interfacial dislocations of epitaxial NiSi2/Si and CoSi2/Si systems. The dislocations were found to be of edge type with ⅙<112> and ½<110> Burgers' vectors. The average spacings are close to their respective theoretically predicted values.


2001 ◽  
Vol 16 (8) ◽  
pp. 2336-2342 ◽  
Author(s):  
A. M. Serventi ◽  
M. A. El Khakani ◽  
R. G. Saint-Jacques ◽  
D. G. Rickerby

Highly conductive iridium dioxide (IrO2) thin films have been deposited onto in situ oxidized Si(100) substrates by means of a reactive pulsed laser deposition (PLD) process. The polycrystalline IrO2 films were obtained by ablating a metal iridium target under an optimal oxygen background pressure of 200 mtorr and at different substrate deposition temperatures (Td ) ranging from 350 to 550 °C. Conventional and high-resolution transmission electron microscopy (HRTEM) techniques were used to investigate the micro- and nanostructural changes of the PLD IrO2 films as a function of their deposition temperatures. The microstructure and the morphology of the PLD IrO2 films was found to change drastically from an irregular and loosely packed columnar structure at Td = 300 °C to a uniform and densely packed columnar structure for higher Td (≥350 °C). For IrO2 films deposited in the 350 ≤ Td ≤ 550 °C range, HRTEM have revealed the presence of highly textured arrangements of almost spherical IrO2 nanograins (of 3–5 nm diameter, regardless of Td) in the columns (of which diameter was found to increase from 85 ± 15 to 180 ± 20 nm as Td increases from 350 to 550 °C). Lattice resolution and dark-field imaging have pointed out the presence of large IrO2 crystallites made of many similarly oriented nanograins (i.e., under the same Bragg diffraction conditions). Moreover, a high continuity of the lattice planes across the entire crystallite was clearly observed. This latter aspect together with the highly textured nanostructure of the IrO2 films correlate well with their high conductivity (42 ± 6 μω cm for Td ≥ 400), which was found to be comparable with that of bulk single-crystal IrO2.


1997 ◽  
Vol 481 ◽  
Author(s):  
K. Landry ◽  
H. Sieber ◽  
M. Sui ◽  
J. H. Perepezko

ABSTRACTThe reaction at the interface between Al and amorphous C in Al/C multilayer thin films with modulation wavelengths of about 25nm and 125nm has been investigated by differential scanning calorimetry, X-ray diffraction, transmission electron microscopy/selected area electron diffraction and high resolution transmission electron microscopy. The reaction was found to take place in two steps. The first step onsets at about 300°C, and was identified as the diffusion of C into Al. The second step starts above 400°C, at a temperature strongly dependent on the modulation wavelength of the film, and is the formation of A14C3. The carbide has been observed to nucleate and grow inside the Al layers. The multilayer structure is preserved in the samples up to at least 550°C, and Al grains start to grow at or below 300°C.


Sign in / Sign up

Export Citation Format

Share Document