scholarly journals Localization of ASFV DNA replication and morphological study of subnuclear compartments during viral infection

2013 ◽  
Vol 19 (S4) ◽  
pp. 13-14
Author(s):  
M. Simões ◽  
C. Martins ◽  
F. Ferreira

African Swine Fever Virus (ASFV) is one of the most threatening agents of domestic pig diseases, without a vaccine or treatment, being its control exclusively based on compulsive sanitary measures. Until now, ASFV was thought to perform its viral life cycle within the cytoplasm although recent evidences indicate the presence of viral DNA material inside the host cell nucleus promoting ASFV reclassification into the Nucleocytoplasmic Large DNA Viruses group (NCLDV). So far, no studies have been performed regarding ASFV genome replication phenomena or the host nuclear compartments morphology during cellular infection. Therefore, we aim to unveil the spatiotemporal localization of ASFV DNA replication and the distribution patterns of three subnuclear domains (PML, speckles and coiled bodies), in order to improve knowledge on host nucleus-viral interactions.For the viral DNA replication foci staining, Vero cells were synchronized at a G2/M stage with nocodazole (250 ng/ml, 24h). Following synchronization, cells were grown on glass coverslips (5,0x104 cells/cm2) and infected with ASFV-Ba71V isolate (1h adsorption period with a multiplicity of infection of 5). Afterwards, at specific time-points of viral infection, BrdU (150 µM/ml) was added for a short pulse (30 min) and immediate fixation was performed. For BrdU and ASFV immunodetection, the following primary and secondary antibodies were used: sheep polyclonal anti-BrdU (GTX21893, Genetex, USA; 1:100), an in-house clarified swine anti-ASFV whole-serum (1:100); Alexa Fluor 594 donkey anti-sheep IgG (A-11016, Life Technologies, USA; 1:500) and a FITC rabbit anti-swine IgG (ab6773, Abcam, UK; 1:400). For PML, speckles and coiled nuclear bodies immunolabeling a rabbit polyclonal anti-PML (ab53773, Abcam; 1:100), a goat polyclonal anti-SC35 (sc-10252, Santa Cruz Biotech, USA; 1:50) and a rabbit popyclonal anti-coilin (sc-32860, Santa Cruz Biotech; 1:50) were used, while DyLight 594 donkey anti-rabbit IgG (ab98490, Abcam; 1:500) and Alexa Fluor 594 chicken anti-goat IgG (A-21468, Molecular Probes, 1:400) were used as the secondary antibodies. Microscopic analysis of cells was performed with a Leica epifluorescence microscope (model DM R HC, Germany). De novo synthesized viral DNA was identified in a scattered nuclear localization (discreet dots) during the initial period of infection (Fig. 1, row 1), whereas in a later phase of infection (8h pi), most of the BrdU signal accumulated in the cytoplasmic viral factory (Fig. 1, row 2). PML bodies and nuclear speckles presented a morphological enlargement and a decreasing number in ASFV infected Vero cells (Fig. 2, rows 1 and 2). In an opposite manner, the coiled bodies increased their number during infection (Fig.2, row 3).Our results provide the first evidence that ASFV DNA replication also occurs inside the host nucleus. Nuclear discrete replication foci, at the initial onset of the viral infection, contrast to an accumulation of synthesized viral DNA inside the bigger cytoplasmic viral factory, suggesting that these two distinct patterns are related to the viral life cycle demands. The early PML reorganization can probably be related with cellular antiviral defense mechanisms, given that DNA damage response and p53 are activated during ASFV infection. The low number of nuclear speckles observed in ASFV-infected cells, associated with their enlargement, is most possibly related to the relocation of host splicing factors, since ASFV genome lacks intronic regions.This study was supported by Fundação para a Ciência e Tecnologia through the Project (PTDC/CVT/105630/2008) and the PhD fellowship (SFRH/BD/65532/2009).

2003 ◽  
Vol 84 (3) ◽  
pp. 639-645 ◽  
Author(s):  
Victoria Ellsmore ◽  
G. Gordon Reid ◽  
Nigel D. Stow

Human cytomegalovirus (HCMV) displays an exceptionally restricted host range in tissue culture with human fibroblasts being the principal fully permissive system. Nevertheless, immediate early (IE) proteins are expressed following infection of many non-permissive cell types of human, simian and murine origin, and viral origin-dependent DNA synthesis has been reconstituted by transfection of plasmids into Vero cells, a non-permissive line from African green monkey. We have examined the accumulation of HCMV strain AD169 DNA, and the replication of transfected HCMV origin-containing plasmids, in infected Vero and human embryonic kidney 293 cells, which were previously reported to express the major IE protein in a small proportion of infected cells but to be non-permissive for viral DNA synthesis. In Vero cells accumulation of origin-containing plasmid but not viral DNA occurred, whilst in 293 cells both DNAs accumulated. Immunofluorescence experiments indicated that following infection with 3 p.f.u. per cell, a small fraction of both cell types expressed the UL44 DNA replication protein. Neither cell line, however, supported the generation of infectious progeny virus. These results suggest that IE proteins expressed in Vero and 293 cells can induce the synthesis of early proteins capable of functioning in viral DNA replication, but there is a failure in later events on the pathway to infectious virus production. This provides further support for transfected Vero cells being a valid system in which to study HCMV DNA synthesis, and suggests that 293 cells may also prove useful in similar experiments.


2000 ◽  
Vol 149 (2) ◽  
pp. 271-280 ◽  
Author(s):  
Heinrich Leonhardt ◽  
Hans-Peter Rahn ◽  
Peter Weinzierl ◽  
Anje Sporbert ◽  
Thomas Cremer ◽  
...  

DNA replication occurs in microscopically visible complexes at discrete sites (replication foci) in the nucleus. These foci consist of DNA associated with replication machineries, i.e., large protein complexes involved in DNA replication. To study the dynamics of these nuclear replication foci in living cells, we fused proliferating cell nuclear antigen (PCNA), a central component of the replication machinery, with the green fluorescent protein (GFP). Imaging of stable cell lines expressing low levels of GFP-PCNA showed that replication foci are heterogeneous in size and lifetime. Time-lapse studies revealed that replication foci clearly differ from nuclear speckles and coiled bodies as they neither show directional movements, nor do they seem to merge or divide. These four dimensional analyses suggested that replication factories are stably anchored in the nucleus and that changes in the pattern occur through gradual, coordinated, but asynchronous, assembly and disassembly throughout S phase.


2003 ◽  
Vol 77 (9) ◽  
pp. 5295-5304 ◽  
Author(s):  
Jared D. Evans ◽  
Patrick Hearing

ABSTRACT Adenovirus early proteins E4 ORF3 and E4 ORF6 have complementary functions during viral infection. Both proteins facilitate efficient viral DNA replication, late protein expression, and prevention of concatenation of viral genomes. Additionally, E4 ORF6 is involved in the shutoff of the host cell protein synthesis through its interaction with the E1B 55K protein. This complex also leads to the degradation of p53. A unique function of E4 ORF3 is the reorganization of nuclear structures known as PML oncogenic domains (PODs). The function of these domains is unclear, but PODs have been implicated in a number of important cellular processes, including transcriptional regulation, apoptosis, transformation, and response to interferon. The goal of this study was to determine the functional significance of the reorganization of PODs by E4 ORF3. Point mutations were made in the E4 ORF3 gene. These mutants were recombined into a virus lacking E4 ORF6 and expressed under the control of the natural virus E4 promoter. The panel of mutant viruses was used to investigate the role of E4 ORF3 during the course of the viral infection program. One of the mutant viruses exhibited aberrant reorganization of PODs and had a severe defect in viral DNA replication, thus leading to a dramatic decrease in virus production. A number of mutants accumulated viral DNA and infectious virus particles to wild-type levels but showed significant viral genome concatenation. These data show that E4 ORF3 is a multifunctional protein and that a specific rearrangement of nuclear PML domains is coupled to efficient viral DNA replication. This function is distinct from the role of E4 ORF3 in the regulation of virus genome concatenation via inhibition of cellular double-strand break repair.


2010 ◽  
Vol 34 (8) ◽  
pp. S60-S60
Author(s):  
Yuning Sun ◽  
Fang Li ◽  
Jianming Qiu ◽  
Xiaohong Lu

2012 ◽  
Vol 86 (18) ◽  
pp. 9817-9827 ◽  
Author(s):  
Alexandra Nitzsche ◽  
Charlotte Steinhäußer ◽  
Katrin Mücke ◽  
Christina Paulus ◽  
Michael Nevels

In the nuclei of permissive cells, human cytomegalovirus genomes form nucleosomal structures initially resembling heterochromatin but gradually switching to a euchromatin-like state. This switch is characterized by a decrease in histone H3 K9 methylation and a marked increase in H3 tail acetylation and H3 K4 methylation across the viral genome. We used ganciclovir and a mutant virus encoding a reversibly destabilized DNA polymerase to examine the impact of DNA replication on histone modification dynamics at the viral chromatin. The changes in H3 tail acetylation and H3 K9 methylation proceeded in a DNA replication-independent fashion. In contrast, the increase in H3 K4 methylation proved to depend widely on viral DNA synthesis. Consistently, labeling of nascent DNA using “click chemistry” revealed preferential incorporation of methylated H3 K4 into viral (but not cellular) chromatin during or following DNA replication. This study demonstrates largely selective epigenetic tagging of postreplicative human cytomegalovirus chromatin.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 321
Author(s):  
Ashley N. Della Fera ◽  
Alix Warburton ◽  
Tami L. Coursey ◽  
Simran Khurana ◽  
Alison A. McBride

Persistent infection with oncogenic human papillomavirus (HPV) types is responsible for ~5% of human cancers. The HPV infectious cycle can sustain long-term infection in stratified epithelia because viral DNA is maintained as low copy number extrachromosomal plasmids in the dividing basal cells of a lesion, while progeny viral genomes are amplified to large numbers in differentiated superficial cells. The viral E1 and E2 proteins initiate viral DNA replication and maintain and partition viral genomes, in concert with the cellular replication machinery. Additionally, the E5, E6, and E7 proteins are required to evade host immune responses and to produce a cellular environment that supports viral DNA replication. An unfortunate consequence of the manipulation of cellular proliferation and differentiation is that cells become at high risk for carcinogenesis.


2017 ◽  
Vol 91 (8) ◽  
Author(s):  
Zekun Wang ◽  
Weiran Shen ◽  
Fang Cheng ◽  
Xuefeng Deng ◽  
John F. Engelhardt ◽  
...  

ABSTRACT Human bocavirus 1 (HBoV1) belongs to the species Primate bocaparvovirus of the genus Bocaparvovirus of the Parvoviridae family. HBoV1 causes acute respiratory tract infections in young children and has a selective tropism for the apical surface of well-differentiated human airway epithelia (HAE). In this study, we identified an additional HBoV1 gene, bocavirus-transcribed small noncoding RNA (BocaSR), within the 3′ noncoding region (nucleotides [nt] 5199 to 5338) of the viral genome of positive sense. BocaSR is transcribed by RNA polymerase III (Pol III) from an intragenic promoter at levels similar to that of the capsid protein-coding mRNA and is essential for replication of the viral DNA in both transfected HEK293 and infected HAE cells. Mechanistically, we showed that BocaSR regulates the expression of HBoV1-encoded nonstructural proteins NS1, NS2, NS3, and NP1 but not NS4. BocaSR is similar to the adenovirus-associated type I (VAI) RNA in terms of both nucleotide sequence and secondary structure but differs from it in that its regulation of viral protein expression is independent of RNA-activated protein kinase (PKR) regulation. Notably, BocaSR accumulates in the viral DNA replication centers within the nucleus and likely plays a direct role in replication of the viral DNA. Our findings reveal BocaSR to be a novel viral noncoding RNA that coordinates the expression of viral proteins and regulates replication of viral DNA within the nucleus. Thus, BocaSR may be a target for antiviral therapies for HBoV and may also have utility in the production of recombinant HBoV vectors. IMPORTANCE Human bocavirus 1 (HBoV1) is pathogenic to humans, causing acute respiratory tract infections in young children. In this study, we identified a novel HBoV1 gene that lies in the 3′ noncoding region of the viral positive-sense genome and is transcribed by RNA polymerase III into a noncoding RNA of 140 nt. This bocavirus-transcribed small RNA (BocaSR) diverges from both adenovirus-associated (VA) RNAs and Epstein-Barr virus-encoded small RNAs (EBERs) with respect to RNA sequence, representing a third species of this kind of Pol III-dependent viral noncoding RNA and the first noncoding RNA identified in autonomous parvoviruses. Unlike the VA RNAs, BocaSR localizes to the viral DNA replication centers of the nucleus and is essential for expression of viral nonstructural proteins independent of RNA-activated protein kinase R and replication of HBoV1 genomes. The identification of BocaSR and its role in virus DNA replication reveals potential avenues for developing antiviral therapies.


Sign in / Sign up

Export Citation Format

Share Document