Probing Compositional Order in Atomic Columns: STEM Simulations Beyond the Virtual Crystal Approximation

2019 ◽  
Vol 26 (1) ◽  
pp. 46-52
Author(s):  
Douglas A. Blom ◽  
Thomas Vogt

AbstractTaking advantage of recent advances in parallel computing, we studied compositional disorder along metal–oxygen atomic columns in a complex Mo,V-oxide bronze using multislice frozen-phonon calculations. Commonly, the virtual crystal approximation (VCA) is used to model compositional disorder at crystallographic sites in a unit cell for a number of different theoretical and experimental techniques. In the VCA, a weighted linear sum of atomic properties is used to approximate the model structure. When using the VCA, the extracted V content of Mo,V–O columns from experimental high-angle annular dark-field (HAADF) images will be about half the V content estimated from simulations, considering the distinct cation ordering. This discrepancy is larger than the spread of HAADF signals of different configurational orders at a given V concentration, which can be up to 20%. Certain “isophilic” atomic arrangements along the column can be distinguished from more random ones using HAADF-STEM imaging. The trends and ratios of the simulated intensity spreads due to different compositional ordering along 11 M–O columns along the c-axis of the Mo,V oxide bronze qualitatively match those observed in experimental HAADF-STEM data. Instrumental and sample-based noise adds to the variability but does not significantly distort the relative ratios of column intensity variation. We observed that we only required seven random configurations to represent the intensity variations along columns.

Author(s):  
M. Kelly ◽  
D.M. Bird

It is well known that strain fields can have a strong influence on the details of HREM images. This, for example, can cause problems in the analysis of edge-on interfaces between lattice mismatched materials. An interesting alternative to conventional HREM imaging has recently been advanced by Pennycook and co-workers where the intensity variation in the annular dark field (ADF) detector is monitored as a STEM probe is scanned across the specimen. It is believed that the observed atomic-resolution contrast is correlated with the intensity of the STEM probe at the atomic sites and the way in which this varies as the probe moves from cell to cell. As well as providing a directly interpretable high-resolution image, there are reasons for believing that ADF-STEM images may be less suseptible to strain than conventional HREM. This is because HREM images arise from the interference of several diffracted beams, each of which is governed by all the excited Bloch waves in the crystal.


2016 ◽  
Vol 169 ◽  
pp. 1-10 ◽  
Author(s):  
Andreas Beyer ◽  
Jürgen Belz ◽  
Nikolai Knaub ◽  
Kakhaber Jandieri ◽  
Kerstin Volz

1996 ◽  
Vol 466 ◽  
Author(s):  
C. B. Boothroyd ◽  
R. E. Dunin-Borkowski ◽  
T. Walther

ABSTRACTWe examine the scattering distribution from thin C, Ge and thick Si specimens as a function of scattering angle and energy loss, in order to gain insight into the relative contributions to both low and high angle annular dark field images from elastically and inelastically scattered elections.


Sign in / Sign up

Export Citation Format

Share Document