scholarly journals A remark on convergence of test functions

1975 ◽  
Vol 20 (1) ◽  
pp. 73-76 ◽  
Author(s):  
W. F. Moss

In this note it is shown in the most frequently encountered spaces of test functions in the theory of generalized functions that the customary definitions of convergence are equivalent to apparently much weaker definitions. For example, in the space g the condition of uniform convergence of the functions together with all derivatives (which appears in the definition of convergence) is equivalent to the condition of pointwise convergence of the functions alone. Thus verification of convergence is simplified somewhat.


Filomat ◽  
2016 ◽  
Vol 30 (13) ◽  
pp. 3641-3647 ◽  
Author(s):  
Abdullah Alotaibi ◽  
M. Mursaleen

Aktu?lu and H. Gezer [Central European J. Math. 7 (2009), 558-567] introduced the concepts of lacunary equistatistical convergence, lacunary statistical pointwise convergence and lacunary statistical uniform convergence for sequences of functions. In this paper, we apply the notion of lacunary equistatistical convergence to prove a Korovkin type approximation theorem by using test functions 1, x/1-x,(x/1-x)2.



Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2009
Author(s):  
Asifa Tassaddiq

The confluence of distributions (generalized functions) with integral transforms has become a remarkably powerful tool to address important unsolved problems. The purpose of the present study is to investigate a distributional representation of the generalized Krätzel function. Hence, a new definition of these functions is formulated over a particular set of test functions. This is validated using the classical Fourier transform. The results lead to a novel extension of Krätzel functions by introducing distributions in terms of the delta function. A new version of the generalized Krätzel integral transform emerges as a natural consequence of this research. The relationship between the Krätzel function and the H-function is also explored to study new identities.



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Shrideh Khalaf Al-Omari ◽  
Serkan Araci

AbstractThis paper considers the definition and the properties of the generalized natural transform on sets of generalized functions. Convolution products, convolution theorems, and spaces of Boehmians are described in a form of auxiliary results. The constructed spaces of Boehmians are achieved and fulfilled by pursuing a deep analysis on a set of delta sequences and axioms which have mitigated the construction of the generalized spaces. Such results are exploited in emphasizing the virtual definition of the generalized natural transform on the addressed sets of Boehmians. The constructed spaces, inspired from their general nature, generalize the space of integrable functions of Srivastava et al. (Acta Math. Sci. 35B:1386–1400, 2015) and, subsequently, the extended operator with its good qualitative behavior generalizes the classical natural transform. Various continuous embeddings of potential interests are introduced and discussed between the space of integrable functions and the space of integrable Boehmians. On another aspect as well, several characteristics of the extended operator and its inversion formula are discussed.



This paper develops the theory of distributions or generalized functions without any reference to test functions and with no appeal to topology, apart from the concept of weak convergence. In the calculus of weak functions, which is so obtained, a weak function is always a weak derivative of a numerical continuous function, and the fundamental techniques of multiplication, division and passage to a limit are considerably simplified. The theory is illustrated by application to Fourier transforms. The present paper is restricted to weak functions in one dimension. The extension to several dimensions will be published later.



1987 ◽  
Vol 10 (4) ◽  
pp. 671-692 ◽  
Author(s):  
Ahmed I. Zayed

In this paper we extend the definition of the continuous Jacobi transform to a class of generalized functions and obtain a generalized inversion formula for it. As a by-product of our technique we obtain a necessary and sufficient condition for an analytic functionF(λ)inReλ>0to be the continuous Jacobi transform of a generalized function.



1993 ◽  
Vol 161 (1) ◽  
pp. 27-43 ◽  
Author(s):  
Piotr Mikusiński ◽  
Michael D. Taylor


2019 ◽  
Vol 52 (1) ◽  
pp. 139-175
Author(s):  
Marcus Webb ◽  
Vincent Coppé ◽  
Daan Huybrechs

AbstractFourier series approximations of continuous but nonperiodic functions on an interval suffer the Gibbs phenomenon, which means there is a permanent oscillatory overshoot in the neighborhoods of the endpoints. Fourier extensions circumvent this issue by approximating the function using a Fourier series that is periodic on a larger interval. Previous results on the convergence of Fourier extensions have focused on the error in the $$L^2$$ L 2 norm, but in this paper we analyze pointwise and uniform convergence of Fourier extensions (formulated as the best approximation in the $$L^2$$ L 2 norm). We show that the pointwise convergence of Fourier extensions is more similar to Legendre series than classical Fourier series. In particular, unlike classical Fourier series, Fourier extensions yield pointwise convergence at the endpoints of the interval. Similar to Legendre series, pointwise convergence at the endpoints is slower by an algebraic order of a half compared to that in the interior. The proof is conducted by an analysis of the associated Lebesgue function, and Jackson- and Bernstein-type theorems for Fourier extensions. Numerical experiments are provided. We conclude the paper with open questions regarding the regularized and oversampled least squares interpolation versions of Fourier extensions.



Sign in / Sign up

Export Citation Format

Share Document