scholarly journals COMPLEX NUMBERS WITH BOUNDED PARTIAL QUOTIENTS

2012 ◽  
Vol 93 (1-2) ◽  
pp. 9-20 ◽  
Author(s):  
WIEB BOSMA ◽  
DAVID GRUENEWALD

AbstractConjecturally, the only real algebraic numbers with bounded partial quotients in their regular continued fraction expansion are rationals and quadratic irrationals. We show that the corresponding statement is not true for complex algebraic numbers in a very strong sense, by constructing, for every even degree $d$, algebraic numbers of degree $d$ that have bounded complex partial quotients in their Hurwitz continued fraction expansion. The Hurwitz expansion is the complex generalization of the nearest integer continued fraction for real numbers. In the case of real numbers the boundedness of regular and nearest integer partial quotients is equivalent.

2009 ◽  
Vol 29 (5) ◽  
pp. 1451-1478 ◽  
Author(s):  
FRANCESCO CELLAROSI

AbstractWe prove the existence of the limiting distribution for the sequence of denominators generated by continued fraction expansions with even partial quotients, which were introduced by Schweiger [Continued fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg4 (1982), 59–70; On the approximation by continues fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg1–2 (1984), 105–114] and studied also by Kraaikamp and Lopes [The theta group and the continued fraction expansion with even partial quotients. Geom. Dedicata59(3) (1996), 293–333]. Our main result is proven following the strategy used by Sinai and Ulcigrai [Renewal-type limit theorem for the Gauss map and continued fractions. Ergod. Th. & Dynam. Sys.28 (2008), 643–655] in their proof of a similar renewal-type theorem for Euclidean continued fraction expansions and the Gauss map. The main steps in our proof are the construction of a natural extension of a Gauss-like map and the proof of mixing of a related special flow.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 788
Author(s):  
Heewon Chung ◽  
Myungsun Kim ◽  
Ahmad Al Badawi ◽  
Khin Mi Mi Aung ◽  
Bharadwaj Veeravalli

This work is mainly interested in ensuring users’ privacy in asymmetric computing, such as cloud computing. In particular, because lots of user data are expressed in non-integer data types, privacy-enhanced applications built on fully homomorphic encryption (FHE) must support real-valued comparisons due to the ubiquity of real numbers in real-world applications. However, as FHE schemes operate in specific domains, such as that of congruent integers, most FHE-based solutions focus only on homomorphic comparisons of integers. Attempts to overcome this barrier can be grouped into two classes. Given point numbers in the form of approximate real numbers, one class of solution uses a special-purpose encoding to represent the point numbers, whereas the other class constructs a dedicated FHE scheme to encrypt point numbers directly. The solutions in the former class may provide depth-efficient arithmetic (i.e., logarithmic depth in the size of the data), but not depth-efficient comparisons between FHE-encrypted point numbers. The second class may avoid this problem, but it requires the precision of point numbers to be determined before the FHE setup is run. Thus, the precision of the data cannot be controlled once the setup is complete. Furthermore, because the precision accuracy is closely related to the sizes of the encryption parameters, increasing the precision of point numbers results in increasing the sizes of the FHE parameters, which increases the sizes of the public keys and ciphertexts, incurring more expensive computation and storage. Unfortunately, this problem also occurs in many of the proposals that fall into the first class. In this work, we are interested in depth-efficient comparison over FHE-encrypted point numbers. In particular, we focus on enabling the precision of point numbers to be manipulated after the system parameters of the underlying FHE scheme are determined, and even after the point numbers are encrypted. To this end, we encode point numbers in continued fraction (CF) form. Therefore, our work lies in the first class of solutions, except that our CF-based approach allows depth-efficient homomorphic comparisons (more precisely, the complexity of the comparison is O ( log κ + log n ) for a number of partial quotients n and their bit length κ , which is normally small) while allowing users to determine the precision of the encrypted point numbers when running their applications. We develop several useful applications (e.g., sorting) that leverage our CF-based homomorphic comparisons.


Author(s):  
JINHUA CHANG ◽  
HAIBO CHEN

AbstractLet 0 ⩽ α ⩽ ∞ and ψ be a positive function defined on (0, ∞). In this paper, we will study the level sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) which are related respectively to the sequence of the largest digits among the first n partial quotients {Ln(x)}n≥1, the increasing sequence of the largest partial quotients {Bn(x)}n⩾1 and the sequence of successive occurrences of the largest partial quotients {Tn(x)}n⩾1 in the continued fraction expansion of x ∈ [0,1) ∩ ℚc. Under suitable assumptions of the function ψ, we will prove that the sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) are all of full Hausdorff dimensions for any 0 ⩽ α ⩽ ∞. These results complement some limit theorems given by J. Galambos [4] and D. Barbolosi and C. Faivre [1].


1996 ◽  
Vol 10 (17) ◽  
pp. 2081-2101
Author(s):  
TOSHIO YOSHIKAWA ◽  
KAZUMOTO IGUCHI

The continued fraction expansion for a positive real number is generalized to that for a set of positive real numbers. For arbitrary integer n≥2, this generalized continued fraction expansion generates (n−1) sequences of positive integers {ak}, {bk}, … , {yk} from a given set of (n−1) positive real numbers α, β, …ψ. The sequences {ak}, {bk}, … ,{yk} determine a sequence of substitutions Sk: A → Aak Bbk…Yyk Z, B → A, C → B,…,Z → Y, which constructs a one-dimensional quasiperiodic lattice with n elements A, B, … , Z. If {ak}, {bk}, … , {yk} are infinite periodic sequences with an identical period, then the ratio between the numbers of n elements A, B, … , Z in the lattice becomes a : β : … : ψ : 1. Thereby the correspondence is established between all the sets of (n−1) positive real numbers represented by a periodic generalized continued fraction expansion and all the one-dimensional quasiperiodic lattices with n elements generated by a sequence of substitutions with a finite period.


2020 ◽  
Vol 15 (2) ◽  
pp. 1-8
Author(s):  
Francesco Amoroso ◽  
Moubinool Omarjee

AbstractLet α be an irrational real number; the behaviour of the sum SN (α):= (−1)[α] +(−1)[2α] + ··· +(−1)[Nα] depends on the continued fraction expansion of α/2. Since the continued fraction expansion of \sqrt 2 /2 has bounded partial quotients, {S_N}\left( {\sqrt 2 } \right) = O\left( {\log \left( N \right)} \right) and this bound is best possible. The partial quotients of the continued fraction expansion of e grow slowly and thus {S_N}\left( {2e} \right) = O\left( {{{\log {{\left( N \right)}^2}} \over {\log \,\log {{\left( N \right)}^2}}}} \right), again best possible. The partial quotients of the continued fraction expansion of e/2 behave similarly as those of e. Surprisingly enough 1188.


Author(s):  
LINGLING HUANG ◽  
CHAO MA

Abstract This paper is concerned with the growth rate of the product of consecutive partial quotients relative to the denominator of the convergent for the continued fraction expansion of an irrational number. More precisely, given a natural number $m,$ we determine the Hausdorff dimension of the following set: $$ \begin{align*} E_m(\tau)=\bigg\{x\in [0,1): \limsup\limits_{n\rightarrow\infty}\frac{\log (a_n(x)a_{n+1}(x)\cdots a_{n+m}(x))}{\log q_n(x)}=\tau\bigg\}, \end{align*} $$ where $\tau $ is a nonnegative number. This extends the dimensional result of Dirichlet nonimprovable sets (when $m=1$ ) shown by Hussain, Kleinbock, Wadleigh and Wang.


Sign in / Sign up

Export Citation Format

Share Document