scholarly journals Origin of homochirality in biological systems

2005 ◽  
Vol 4 (1) ◽  
pp. 43-48 ◽  
Author(s):  
S. Toxvaerd

Models for segregation of racemic mixtures of chiral amphiphiles and lipophiles in aqueous solutions show that the amphiphiles with active isomerization kinetics can perform a spontaneous symmetry break during the segregation and self-assemble to homochiral matter. Based on physico-chemical facts, it is argued that D-glyceraldehyde, which was synthesized from the volatiles at the hydrothermal reactors at the origin of life, could be the origin of homochirality in biological systems.

2021 ◽  
Author(s):  
soumya banerjee

Information plays a critical role in complex biological systems. Complex systems like immune systems andant colonies co-ordinate heterogeneous components in a decentralized fashion. How do these distributeddecentralized systems function? One key component is how these complex systems efficiently processinformation. These complex systems have an architecture for integrating and processing informationcoming in from various sources and points to the value of information in the functioning of differentcomplex biological systems. This article proposes a role for information processing in questions aroundthe origin of life and suggests how computational simulations may yield insights into questions related tothe origin of life.Such a computational model of the origin of life would unify thermodynamics with information processingand we would gain an appreciation of why proteins and nucleotides evolved as the substrate ofcomputation and information processing in living systems that we see on Earth. Answers to questionslike these may give us insights into non-carbon based forms of life that we could search for outside Earth.We hypothesize that carbon-based life forms are only one amongst a continuum of life-like systems inthe universe. Investigations into the role of computational substrates that allow information processingis important and could yield insights into:1) novel non-carbon based computational substrates that may have “life-like” properties, and2) how life may have actually originated from non-life on Earth.Life may exist as a continuum between non-life and life and we may have to revise our notion oflife and how common it is in the universe. Looking at life or life-like phenomenon through the lens ofinformation theory may yield a broader view of life.


1997 ◽  
Vol 161 ◽  
pp. 419-429 ◽  
Author(s):  
Antonio Lazcano

AbstractDifferent current ideas on the origin of life are critically examined. Comparison of the now fashionable FeS/H2S pyrite-based autotrophic theory of the origin of life with the heterotrophic viewpoint suggest that the later is still the most fertile explanation for the emergence of life. However, the theory of chemical evolution and heterotrophic origins of life requires major updating, which should include the abandonment of the idea that the appearance of life was a slow process involving billions of years. Stability of organic compounds and the genetics of bacteria suggest that the origin and early diversification of life took place in a time period of the order of 10 million years. Current evidence suggest that the abiotic synthesis of organic compounds may be a widespread phenomenon in the Galaxy and may have a deterministic nature. However, the history of the biosphere does not exhibits any obvious trend towards greater complexity or «higher» forms of life. Therefore, the role of contingency in biological evolution should not be understimated in the discussions of the possibilities of life in the Universe.


1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


2019 ◽  
Vol 3 (5) ◽  
pp. 435-443 ◽  
Author(s):  
Addy Pross

Despite the considerable advances in molecular biology over the past several decades, the nature of the physical–chemical process by which inanimate matter become transformed into simplest life remains elusive. In this review, we describe recent advances in a relatively new area of chemistry, systems chemistry, which attempts to uncover the physical–chemical principles underlying that remarkable transformation. A significant development has been the discovery that within the space of chemical potentiality there exists a largely unexplored kinetic domain which could be termed dynamic kinetic chemistry. Our analysis suggests that all biological systems and associated sub-systems belong to this distinct domain, thereby facilitating the placement of biological systems within a coherent physical/chemical framework. That discovery offers new insights into the origin of life process, as well as opening the door toward the preparation of active materials able to self-heal, adapt to environmental changes, even communicate, mimicking what transpires routinely in the biological world. The road to simplest proto-life appears to be opening up.


Sign in / Sign up

Export Citation Format

Share Document