Photochemical stability of biomolecules in the experiments modelling Martian surface conditions

2005 ◽  
Vol 4 (1) ◽  
pp. 93-96 ◽  
Author(s):  
N.B. Gontareva

Life has probably existed on Earth for about 3.5 billion years and ever since people could wonder, they have tried to understand its origins. It is thought that organisms as complex as bacteria emerged within 0.5–1 billion years. Organic molecules, such as amino acids, organic acids and sugars have been observed in material from extraterrestrial sources in the solar system. But, to confirm the possibility of nucleic acid bases also being synthesized under these conditions, we have replicated the synthesis of monophosphates as dry pellets (5′-monophosphates, the predominant reaction products) under simulated Martian conditions. Our research task was to find out whether the main organic substances were able to survive in the absence of water. This reaction must proceed under solvent-free conditions and incident short ultraviolet radiation (UVC) in a vacuum. After 5 months of reaction time monophosphates could be identified in detectable quantities. These experiments utilized basalt and limonite as protectors and successfully shielded the products from decomposition by UVC. Our team has obtained more results concerning prebiotic synthesis of polypeptides and nucleotides in the presence of meteorite dust; these are the same kind of experiment, but using different extraterrestrial material.

2017 ◽  
Vol 132 (7) ◽  
Author(s):  
Lorenzo Botta ◽  
Bruno Mattia Bizzarri ◽  
Davide Piccinino ◽  
Teresa Fornaro ◽  
John Robert Brucato ◽  
...  

Icarus ◽  
2011 ◽  
Vol 211 (2) ◽  
pp. 1162-1178 ◽  
Author(s):  
A.P. Johnson ◽  
L.M. Pratt ◽  
T. Vishnivetskaya ◽  
S. Pfiffner ◽  
R.A. Bryan ◽  
...  

2008 ◽  
Vol 74 (16) ◽  
pp. 5159-5167 ◽  
Author(s):  
Patricia Fajardo-Cavazos ◽  
Andrew C. Schuerger ◽  
Wayne L. Nicholson

ABSTRACTMost planetary protection research has concentrated on characterizing viable bioloads on spacecraft surfaces, developing techniques for bioload reduction prior to launch, and studying the effects of simulated martian environments on microbial survival. Little research has examined the persistence of biogenic signature molecules on spacecraft materials under simulated martian surface conditions. This study examined how endogenous adenosine-5′-triphosphate (ATP) would persist on aluminum coupons under simulated martian conditions of 7.1 mbar, full-spectrum simulated martian radiation calibrated to 4 W m−2of UV-C (200 to 280 nm), −10°C, and a Mars gas mix of CO2(95.54%), N2(2.7%), Ar (1.6%), O2(0.13%), and H2O (0.03%). Cell or spore viabilities ofAcinetobacter radioresistens, Bacillus pumilus, andB. subtiliswere measured in minutes to hours, while high levels of endogenous ATP were recovered after exposures of up to 21 days. The dominant factor responsible for temporal reductions in viability and loss of ATP was the simulated Mars surface radiation; low pressure, low temperature, and the Mars gas composition exhibited only slight effects. The normal burst of endogenous ATP detected during spore germination inB. pumilusandB. subtiliswas reduced by 1 or 2 orders of magnitude following, respectively, 8- or 30-min exposures to simulated martian conditions. The results support the conclusion that endogenous ATP will persist for time periods that are likely to extend beyond the nominal lengths of most surface missions on Mars, and planetary protection protocols prior to launch may require additional rigor to further reduce the presence and abundance of biosignature molecules on spacecraft surfaces.


2012 ◽  
Vol 12 (1) ◽  
pp. 78-86 ◽  
Author(s):  
Teresa Fornaro ◽  
John Robert Brucato ◽  
Sergio Branciamore ◽  
Amaranta Pucci

AbstractThe adsorption of organic molecules on mineral matrices might have played a fundamental role in processes that led to the emergence of life. We investigated the adsorption properties of the nucleobases adenine, cytosine, uracil and hypoxanthine on magnesium oxide (MgO), determining the single solute batch equilibrium adsorption isotherms. Langmuir-type isotherms were fitted to data, assuming a rapid reversible equilibration of adsorption, demonstrated effectively through desorption experiments. The Langmuir equilibrium adsorption constantKand the amount of the solute per unit of adsorbent mass necessary to complete the monolayerbwere calculated. The results indicate that MgO is a good adsorbent for nucleobases (adenine > uracil > hypoxantine > cytosine), suggesting a role of metal oxides in concentrating biomolecules in prebiotic conditions that might have favoured the passage from geochemistry to biochemistry.


2016 ◽  
Vol 9 (6) ◽  
pp. 425-428 ◽  
Author(s):  
M. Massé ◽  
S. J. Conway ◽  
J. Gargani ◽  
M. R. Patel ◽  
K. Pasquon ◽  
...  

Astrobiology ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 221-237 ◽  
Author(s):  
Olivier Poch ◽  
Maguy Jaber ◽  
Fabien Stalport ◽  
Sophie Nowak ◽  
Thomas Georgelin ◽  
...  

2021 ◽  
Author(s):  
Imanol Torre-Fdez ◽  
Teresa Fornaro ◽  
Julene Aramendia ◽  
Ann Ollila ◽  

<p>One of the main objectives of the Perseverance rover is to find signs of ancient life in the Martian surface, seeking biosignatures and signs of past habitable conditions. This could be achieved with the finding of organic compounds related to life. Raman spectroscopy is among the techniques that the rover is capable of performing, which is able to detect and discern organic molecules. Perseverance carries in its payload two instruments that are able to use this technique, SuperCam for remote sensing and SHERLOC for proximity measurements. SuperCam is a long-distance instrument capable of performing several techniques (Raman, LIBS, luminescence, VISIR, microphone) in order to assess the chemical and molecular composition of rocks (mineral phases and organic molecules) from a distance up to 7 m. Therefore, it could detect organics, or traces of them, from a distance before the rover gets closer.</p><p>In this work, a set of Mars soil analog samples were analyzed using the Flying Model-Body Unit / Engineering Qualification Model-Mast Unit (FM-BU/EQM-MU) setup of SuperCam. Specifically, the samples were prepared in the laboratory by adsorbing adenosine 5’-monophosphate, L-glutamic acid, L-phenylalanine, and phthalic acid with different known concentrations (5 wt%, 1 wt% and 0.1 wt%) on the clay mineral montmorillonite doped with 1 wt% of Mg-perchlorate. The preparation and characterization of those samples can be found in literature [1]. The analyses were carried out at a 2 m distance from the targets, with a laser spot size of around 300 µm at that distance. SuperCam showed excellent results for the pure compounds, before adsorption on the clay mineral. At 5 wt% concentration, the Raman signals of the organics were barely visible and at 1 wt% they were no longer visible. This fact means that if the laser of SuperCam hits an organic “hotspot” in a rock from a distance, it will be able to detect it as long as it has a concentration around 5 wt% or greater in the analyzed area, allowing SHERLOC to do further contact analysis afterwards. In addition, the SuperCam results were compared with those obtained with a commercial laboratory instrument (Renishaw inVia), obtaining the same main signals and only missing some minor secondary bands.</p><p>[1] T. Fornaro, J. R. Brucato, G. Poggiali, M. A. Corazzi, M. Biczysko, M. Jaber, D. I. Foustoukos, R. M. Hazen, A. Steele, UV irradiation and Near Infrared characterization of laboratory Mars soil analog samples, Frontiers in Astronomy and Space Sciences, 2020, 7, 1-20</p>


Sign in / Sign up

Export Citation Format

Share Document