scholarly journals GAMES AND HEREDITARY BAIRENESS IN HYPERSPACES AND SPACES OF PROBABILITY MEASURES

Author(s):  
Mikołaj Krupski

We establish that the existence of a winning strategy in certain topological games, closely related to a strong game of Choquet, played in a topological space $X$ and its hyperspace $K(X)$ of all nonempty compact subsets of $X$ equipped with the Vietoris topology, is equivalent for one of the players. For a separable metrizable space $X$ , we identify a game-theoretic condition equivalent to $K(X)$ being hereditarily Baire. It implies quite easily a recent result of Gartside, Medini and Zdomskyy that characterizes hereditary Baire property of hyperspaces $K(X)$ over separable metrizable spaces $X$ via the Menger property of the remainder of a compactification of $X$ . Subsequently, we use topological games to study hereditary Baire property in spaces of probability measures and in hyperspaces over filters on natural numbers. To this end, we introduce a notion of strong $P$ -filter ${\mathcal{F}}$ and prove that it is equivalent to $K({\mathcal{F}})$ being hereditarily Baire. We also show that if $X$ is separable metrizable and $K(X)$ is hereditarily Baire, then the space $P_{r}(X)$ of Borel probability Radon measures on $X$ is hereditarily Baire too. It follows that there exists (in ZFC) a separable metrizable space $X$ , which is not completely metrizable with $P_{r}(X)$ hereditarily Baire. As far as we know, this is the first example of this kind.

2018 ◽  
Vol 61 (4) ◽  
pp. 812-821 ◽  
Author(s):  
Andrea Medini ◽  
Jan van Mill ◽  
Lyubomyr Zdomskyy

AbstractWe give a consistent example of a zero-dimensional separable metrizable space Z such that every homeomorphism of Zω acts like a permutation of the coordinates almost everywhere. Furthermore, this permutation varies continuously. This shows that a result of Dow and Pearl is sharp, and gives some insight into an open problem of Terada. Our example Z is simply the set of ω1 Cohen reals, viewed as a subspace of 2ω.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1891
Author(s):  
Orhan Göçür

Do the topologies of each dimension have to be same and metrizable for metricization of any space? I show that this is not necessary with monad metrizable spaces. For example, a monad metrizable space may have got any indiscrete topologies, discrete topologies, different metric spaces, or any topological spaces in each different dimension. I compute the distance in real space between such topologies. First, the passing points between different topologies is defined and then a monad metric is defined. Then I provide definitions and some properties about monad metrizable spaces and PAS metric spaces. I show that any PAS metric space is also a monad metrizable space. Moreover, some properties and some examples about them are presented.


2019 ◽  
Vol 20 (03) ◽  
pp. 2050022 ◽  
Author(s):  
Ali Barzanouni

Existence of expansivity for group action [Formula: see text] depends on algebraic properties of [Formula: see text] and the topology of [Formula: see text]. We give an expansive action of a solvable group on [Formula: see text] while there is no expansive action of a solvable group on a dendrite [Formula: see text]. We prove that a continuous action [Formula: see text] on a compact metric space [Formula: see text] is expansive if and only if there exists an open cover [Formula: see text] such that for any other open cover [Formula: see text], [Formula: see text] for some finite set [Formula: see text]. In this paper, we introduce the notion of topological expansivity of a group action [Formula: see text] on a [Formula: see text]-paracompact space [Formula: see text]. If a [Formula: see text]-paracompact space [Formula: see text] admits topologically expansive action, then [Formula: see text] is Hausdorff space. We also show that a continuous action [Formula: see text] of a finitely generated group [Formula: see text] on a compact Hausdorff uniform space [Formula: see text] is expansive with an expansive neighborhood [Formula: see text] if and only if for every [Formula: see text] there is an entourage [Formula: see text] such that for every two [Formula: see text]-pseudo orbit [Formula: see text] if [Formula: see text] for all [Formula: see text], then [Formula: see text] for all [Formula: see text]. Finally, we introduce measure [Formula: see text]-expansive actions on a uniform space. The set of all [Formula: see text]-expansive measures with common expansive neighborhood for a group action [Formula: see text] is a convex, closed and [Formula: see text]-invariant subset of the set of all Borel probability measures on [Formula: see text]. Also, we show that a group action [Formula: see text] is expansive if all Borel probability measures are [Formula: see text]-expansive or all Dirac measures [Formula: see text], [Formula: see text], have a common expansive neighborhood.


2008 ◽  
Vol 73 (4) ◽  
pp. 1433-1457 ◽  
Author(s):  
Miloš S. Kurilić ◽  
Boris Šobot

AbstractThe game is played on a complete Boolean algebra , by two players. White and Black, in κ-many moves (where κ is an infinite cardinal). At the beginning White chooses a non-zero element p ∈ . In the α-th move White chooses pα ∈ (0, p) and Black responds choosing iα ∈{0, 1}. White winsthe play iff . where and .The corresponding game theoretic properties of c.B.a.'s are investigated. So, Black has a winning strategy (w.s.) if κ ≥ π() or if contains a κ-closed dense subset. On the other hand, if White has a w.s., then κ ∈ . The existence of w.s. is characterized in a combinatorial way and in terms of forcing. In particular, if 2<κ = κ ∈ Reg and forcing by preserves the regularity of κ, then White has a w.s. iff the power 2κ is collapsed to κ in some extension. It is shown that, under the GCH, for each set S ⊆ Reg there is a c.B.a. such that White (respectively. Black) has a w.s. for each infinite cardinal κ ∈ S (resp. κ ∉ S). Also it is shown consistent that for each κ ∈ Reg there is a c.B.a. on which the game is undetermined.


2018 ◽  
Vol 20 (07) ◽  
pp. 1750086 ◽  
Author(s):  
Keonhee Lee ◽  
C. A. Morales ◽  
Bomi Shin

We prove that the set of expansive measures of a homeomorphism of a compact metric space is a [Formula: see text] subset of the space of Borel probability measures equipped with the weak* topology. Next that every expansive measure of a homeomorphism of a compact metric space can be weak* approximated by expansive measures with invariant support. In addition, if the expansive measures of a homeomorphism of a compact metric space are dense in the space of Borel probability measures, then there is an expansive measure whose support is both invariant and close to the whole space with respect to the Hausdorff metric. Henceforth, if the expansive measures are dense in the space of Borel probability measures, the set of heteroclinic points has no interior and the space has no isolated points.


1995 ◽  
Vol 60 (1) ◽  
pp. 325-337 ◽  
Author(s):  
Thierry Coquand

If it is difficult to give the exact significance of consistency proofs from a classical point of view, in particular the proofs of Gentzen [2, 6], and Novikoff [14], the motivations of these proofs are quite clear intuitionistically. Their significance is then less to give a mere consistency proof than to present an intuitionistic explanation of the notion of classical truth. Gentzen for instance summarizes his proof as follows [6]: “Thus propositions of actualist mathematics seem to have a certain utility, but no sense. The major part of my consistency proof, however, consists precisely in ascribing a finitist sense to actualist propositions.” From this point of view, the main part of both Gentzen's and Novikoff's arguments can be stated as establishing that modus ponens is valid w.r.t. this interpretation ascribing a “finitist sense” to classical propositions.In this paper, we reformulate Gentzen's and Novikoff's “finitist sense” of an arithmetic proposition as a winning strategy for a game associated to it. (To see a proof as a winning strategy has been considered by Lorenzen [10] for intuitionistic logic.) In the light of concurrency theory [7], it is tempting to consider a strategy as an interactive program (which represents thus the “finitist sense” of an arithmetic proposition). We shall show that the validity of modus ponens then gets a quite natural formulation, showing that “internal chatters” between two programs end eventually.We first present Novikoff's notion of regular formulae, that can be seen as an intuitionistic truth definition for classical infinitary propositional calculus. We use this in order to motivate the second part, which presents a game-theoretic interpretation of the notion of regular formulae, and a proof of the admissibility of modus ponens which is based on this interpretation.


2010 ◽  
Vol 3 (3) ◽  
pp. 485-519 ◽  
Author(s):  
LOES OLDE LOOHUIS ◽  
YDE VENEMA

We study a generalization of the standard syntax and game-theoretic semantics of logic, which is based on a duality between two players, to a multiplayer setting. We define propositional and modal languages of multiplayer formulas, and provide them with a semantics involving a multiplayer game. Our focus is on the notion of equivalence between two formulas, which is defined by saying that two formulas are equivalent if under each valuation, the set of players with a winning strategy is the same in the two respective associated games. We provide a derivation system which enumerates the pairs of equivalent formulas, both in the propositional case and in the modal case. Our approach is algebraic: We introduce multiplayer algebras as the analogue of Boolean algebras, and show, as the corresponding analog to Stone’s theorem, that these abstract multiplayer algebras can be represented as concrete ones which capture the game-theoretic semantics. For the modal case we prove a similar result. We also address the computational complexity of the problem whether two given multiplayer formulas are equivalent. In the propositional case, we show that this problem is co-NP-complete, whereas in the modal case, it is PSPACE-hard.


2021 ◽  
pp. 1-16
Author(s):  
Jiao Yang

Abstract In this paper, we introduce measure-theoretic for Borel probability measures to characterize upper and lower Katok measure-theoretic entropies in discrete type and the measure-theoretic entropy for arbitrary Borel probability measure in nonautonomous case. Then we establish new variational principles for Bowen topological entropy for nonautonomous dynamical systems. JEL classification numbers: 37A35. Keywords: Nonautonomous, Measure-theoretical entropies, Variational principles.


Sign in / Sign up

Export Citation Format

Share Document