Sufficient conditions for expansive group action

2019 ◽  
Vol 20 (03) ◽  
pp. 2050022 ◽  
Author(s):  
Ali Barzanouni

Existence of expansivity for group action [Formula: see text] depends on algebraic properties of [Formula: see text] and the topology of [Formula: see text]. We give an expansive action of a solvable group on [Formula: see text] while there is no expansive action of a solvable group on a dendrite [Formula: see text]. We prove that a continuous action [Formula: see text] on a compact metric space [Formula: see text] is expansive if and only if there exists an open cover [Formula: see text] such that for any other open cover [Formula: see text], [Formula: see text] for some finite set [Formula: see text]. In this paper, we introduce the notion of topological expansivity of a group action [Formula: see text] on a [Formula: see text]-paracompact space [Formula: see text]. If a [Formula: see text]-paracompact space [Formula: see text] admits topologically expansive action, then [Formula: see text] is Hausdorff space. We also show that a continuous action [Formula: see text] of a finitely generated group [Formula: see text] on a compact Hausdorff uniform space [Formula: see text] is expansive with an expansive neighborhood [Formula: see text] if and only if for every [Formula: see text] there is an entourage [Formula: see text] such that for every two [Formula: see text]-pseudo orbit [Formula: see text] if [Formula: see text] for all [Formula: see text], then [Formula: see text] for all [Formula: see text]. Finally, we introduce measure [Formula: see text]-expansive actions on a uniform space. The set of all [Formula: see text]-expansive measures with common expansive neighborhood for a group action [Formula: see text] is a convex, closed and [Formula: see text]-invariant subset of the set of all Borel probability measures on [Formula: see text]. Also, we show that a group action [Formula: see text] is expansive if all Borel probability measures are [Formula: see text]-expansive or all Dirac measures [Formula: see text], [Formula: see text], have a common expansive neighborhood.

1990 ◽  
Vol 10 (3) ◽  
pp. 451-462 ◽  
Author(s):  
C. D. Cutler

AbstractIn this paper we make precise the relationship between local or pointwise dimension and the dimension structure of Borel probability measures on metric spaces. Sufficient conditions for exact-dimensionality of the stationary ergodic distributions associated with a dynamical system are obtained. A counterexample is provided to show that ergodicity alone is not sufficient to guarantee exactdimensionality even in the case of continuous maps or flows.


1992 ◽  
Vol 12 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Ursula Hamenstädt

AbstractIn this note we study Borel-probability measures on the unit tangent bundle ofa compact negatively curved manifold M that are invariant under the geodesic flow. We interpret the entropy of such a measure as a Hausdorff dimension with respect to a natural family of distances on the ideal boundary of the universal covering of M. This in term yields necessary and sufficient conditions for the existence of time preserving conjugacies of geodesic flows.


2020 ◽  
pp. 1-21
Author(s):  
GÁBOR ELEK

We prove that for any countable group $\unicode[STIX]{x1D6E4}$ , there exists a free minimal continuous action $\unicode[STIX]{x1D6FC}:\unicode[STIX]{x1D6E4}\curvearrowright {\mathcal{C}}$ on the Cantor set admitting an invariant Borel probability measure.


2002 ◽  
Vol 65 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Gil Kaplan ◽  
Arieh Lev

Let G be a transitive permutation group acting on a finite set of order n. We discuss certain types of transversals for a point stabiliser A in G: free transversals and global transversals. We give sufficient conditions for the existence of such transversals, and show the connection between these transversals and combinatorial problems of decomposing the complete directed graph into edge disjoint cycles. In particular, we classify all the inner-transitive Oberwolfach factorisations of the complete directed graph. We mention also a connection to Frobenius theorem.


2008 ◽  
Vol 51 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Ernesto Spinelli

AbstractLet KG be a non-commutative strongly Lie solvable group algebra of a group G over a field K of positive characteristic p. In this note we state necessary and sufficient conditions so that the strong Lie derived length of KG assumes its minimal value, namely [log2(p + 1)].


2015 ◽  
Vol 25 (11) ◽  
pp. 1550150 ◽  
Author(s):  
Oxana Cerba Diaconescu ◽  
Dana Schlomiuk ◽  
Nicolae Vulpe

In this article, we consider the class [Formula: see text] of all real quadratic differential systems [Formula: see text], [Formula: see text] with gcd (p, q) = 1, having invariant lines of total multiplicity four and two complex and one real infinite singularities. We first construct compactified canonical forms for the class [Formula: see text] so as to include limit points in the 12-dimensional parameter space of this class. We next construct the bifurcation diagrams for these compactified canonical forms. These diagrams contain many repetitions of phase portraits and we show that these are due to many symmetries under the group action. To retain the essence of the dynamics we finally construct the quotient spaces under the action of the group G = Aff(2, ℝ) × ℝ* of affine transformations and time homotheties and we place the phase portraits in these quotient spaces. The final diagrams retain only the necessary information to capture the dynamics under the motion in the parameter space as well as under this group action. We also present here necessary and sufficient conditions for an affine line to be invariant of multiplicity k for a quadratic system.


1978 ◽  
Vol 30 (03) ◽  
pp. 466-473 ◽  
Author(s):  
H. L. Shapiro ◽  
F. A. Smith

The concept of an even cover is introduced early in elementary topology courses and is known to be valuable. Among other facts it is known that X is paracompact if and only if every open cover of X is even. In this paper we introduce the concept of an n-even cover and show its usefulness. Using n-even we define an embedding that on closed subsets is equivalent to collectionwise normal. We also give sufficient conditions for a point finite open cover to have a locally finite refinement and also sufficient conditions for this refinement to be even. Finally we show that the collection of all neighborhoods of the diagonal of X is a uniformity if and only if every even cover is normal. This last result is particularly interesting in light of the fact that every normal open cover is even.


Author(s):  
Colin J. H. McDiarmid

The theorem of R. Rado (12) to which I refer by the name ‘Rado's theorem for matroids’ gives necessary and sufficient conditions for a family of subsets of a finite set Y to have a transversal independent in a given matroid on Y. This theorem is of fundamental importance in both transversal theory and matroid theory (see, for example, (11)). In (3) J. Edmonds introduced and studied ‘polymatroids’ as a sort of continuous analogue of a matroid. I start this paper with a brief introduction to polymatroids, emphasizing the role of the ‘ground-set rank function’. The main result is an analogue for polymatroids of Rado's theorem for matroids, which I call not unnaturally ‘Rado's theorem for polymatroids’.


2015 ◽  
Vol 15 (03) ◽  
pp. 1550017 ◽  
Author(s):  
Abdelkarem Berkaoui

We state necessary and sufficient conditions on a set of probability measures to be the set of martingale measures for a vector valued, bounded and adapted process. In the absence of the maximality condition, we prove the existence of the smallest set of martingale measures. We apply such results to the finite sample space case.


2009 ◽  
Vol 19 (11) ◽  
pp. 1995-2037 ◽  
Author(s):  
JAN W. CHOLEWA ◽  
ANÍBAL RODRÍGUEZ-BERNAL

We consider a reaction diffusion equation ut = Δu + f(x, u) in ℝN with initial data in the locally uniform space [Formula: see text], q ∈ [1, ∞), and with dissipative nonlinearities satisfying s f(x, s) ≤ C(x)s2 + D(x) |s|, where [Formula: see text] and [Formula: see text] for certain [Formula: see text]. We construct a global attractor [Formula: see text] and show that [Formula: see text] is actually contained in an ordered interval [φm, φM], where [Formula: see text] is a pair of stationary solutions, minimal and maximal respectively, that satisfy φm ≤ lim inft→∞ u(t; u0) ≤ lim supt→∞ u(t; u0) ≤ φM uniformly for u0 in bounded subsets of [Formula: see text]. A sufficient condition concerning the existence of minimal positive steady state, asymptotically stable from below, is given. Certain sufficient conditions are also discussed ensuring the solutions to be asymptotically small as |x| → ∞. In this case the solutions are shown to enter, asymptotically, Lebesgue spaces of integrable functions in ℝN, the attractor attracts in the uniform convergence topology in ℝN and is a bounded subset of W2,r(ℝN) for some r > N/2. Uniqueness and asymptotic stability of positive solutions are also discussed. Applications to some model problems, including some from mathematical biology are given.


Sign in / Sign up

Export Citation Format

Share Document